Code: AE67/AE118

Subject: DIGITAL COMMUNICATIONS

ROLL NO.

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Ouestions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the 0.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Ouestions answer any FIVE Ouestions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

0.1 Choose the correct or the best alternative in the following:

- a. A source generates three symbols with probability 0.25, 0.25, 0.50 at a rate of 3000 symbols per second. Assuming independent generation of symbols, the most efficient source encoder would have average bit rate of
 - (A) 6000 bits/sec**(B)** 4500 bits/sec (C) 3000 bits/sec
 - **(D)** 1500 bits/sec
- b. A bandlimited signal is sampled at the Nyquist rate. The signal can be recovered by passing the samples through
 - (A) An RC filter
 - (**B**) An envelope detector
 - (C) A PLL
 - (D) An ideal low-pass filter with the appropriate bandwidth
- c. The line code that has zero dc component for pulse transmission of random binary data is
 - (A) Non-return to zero (NRZ) (**B**) Return to zero (RN)
 - (C) Alternate mark inversion (AM) (D) None of these
- d. In binary data transmission DPSK is preferred over PSK because
 - (A) A coherent carrier is not required to be generated at the receiver
 - (B) For a given energy per bit, the probability of error is less
 - (C) The 180° phase shifts of the carrier are unimportant
 - (D) More protection is provided against impulse noise
- e. The bit rate of digital communication system is R kbit/s. The modulation used is 32-QAM. The minimum bandwidth required for ISI free transmission is (A) R/10 Hz (B) R/10 KHz (C) R/5 Hz (D) R/5 KHz
- f. The matched filter is input to а given by $s(t) = \begin{cases} 10\sin(2\pi \times 10^{6}t), & 0 < t < 10^{-4} \sec(2\pi \times 10^{6}t), \\ 0 < t < 10^{-4} \sec(2\pi \times 10^{6}t), & 0 < t < 10^{-4} \sec(2\pi \times 10^{6}t), \end{cases}$ otherwise the peak amplitude of the filter output is **(B)** 5 volts (A) 10 volts (C) 10 millivolts **(D)** 5 millivolts

ROLL NO.

Code: AE67/AE118

- Subject: DIGITAL COMMUNICATIONS
- g. Which of the following technique expands the bandwidth of a signal by replacing each data bit with *n* bits.
 - (A) Frequency Division Multiplexing
 - (B) Direct Sequence Spread Spectrum
 - (C) Frequency Hopped Spread Spectrum
 - (**D**) Time Division Multiplexing
- h. A BPSK scheme operating over an AWGN channel with noise power spectral density of $N_0/2$, uses equiprobable signals

$$s_1(t) = \sqrt{\frac{2E}{T}\sin(w_c t)}$$
 and $s_1(t) = \sqrt{\frac{2E}{T}\sin(w_c t)}$

over the symbol interval (0, T). If the local oscillator in a coherent receiver is ahead in phase by 45^0 with respect to the received signal, the probability of error in the resulting system is

(A)
$$Q\left(\sqrt{\frac{2E}{N_0}}\right)$$
 (B) $Q\left(\sqrt{\frac{E}{N_0}}\right)$
(C) $Q\left(\sqrt{\frac{E}{2N_0}}\right)$ (D) $Q\left(\sqrt{\frac{E}{4N_0}}\right)$

- i. Which of the following technique uses M different carrier frequencies that are modulated by the source signal? At one moment, the sign modulates one carrier frequency; at the next moment, the signal modulates another carrier frequency
 - (A) Frequency Division Multiplexing
 - (B) Direct Sequence Spread Spectrum
 - (C) Frequency Hopped Spread Spectrum
 - **(D)** Time Division Multiplexing
- j. In a baseband communication link, frequencies upto 3500 Hz are used for signalling. Using a raised cosine pulse with 75% excess bandwidth and for no inter symbol interference, the maximum possible signalling rate in symbols per sec is

(A)	1750	(B)	2625
(C)	4000	(D)	5250

Answer any FIVE Questions out of EIGHT Questions Each question carries 16 marks

Q.2	a.	Sketch the block diagram of a digital communication system and explain the functionality of each block.	(6)
	b.	Write advantages and disadvantages of digital communication.	(6)
	c.	Comment upon channels for digital communications.	(4)
Q.3	a.	Explain practical Flat-top sampling for low pass analog signal and explain aperture effect and how it can be compensated.	(8)
	b.	Find the Nyquist rate and the Nyquist interval for the signal $g(t) = sinc(200t) + sinc^2(200t)$.	(2)
	c.	Twenty-four voice signals are sampled uniformly and then time-division multiplexed. The sampling operation uses flat-top samples with 1 μ s duration. The multiplexing operation includes provision for synchronization by adding an extra pulse of sufficient amplitude of 1 μ s duration. The highest frequency	

ROLL NO.

(6)

(5)

(7)

(6)

 $(2 \times 5 = 10)$

component of each voice signal is 3.4 kHz. (a) Assuming a sampling rate of 8 kHz, calculate the spacing between successive pulses of the multiplexed signal. (b) Repeat your calculation assuming the use of Nyquist rate sampling.

- Q.4 a. Sketch the block diagram of PCM system and explain the functionality of each block.
 - b. Determine and illustrate the partition and quantization levels of a 4-bit, uniform midrise quantizer with ±1 volt Full scale (FS) range. For the sequence {0.2, -0.3, -0.7, 0.08, 0.25, 0.5, 0.8, 0.95}, determine the quantized sequence. Also determine the mean square quantization error and Signal to Quantization Noise ratio (SQNR).
 - c. A Differential pulse code modulation system uses a linear predictor with a single tap. The normalized autocorrelation function of the input signal for a lag of one sampling interval is 0.75. The predictor is designed to minimize the prediction error variance. Determine the processing gain attained by the use of this predictor.
- Q.5 a. Explain Nyquist criterion for distortionless Base-Band Binary transmission. (5)
 b. What do you mean by eye pattern? How and where it is used? (5)
 c. Describe adaptive equalization for data transmission. (6)
- Q.6 a. What do you mean by Inter symbol Interference (ISI)? How the effect of ISI can be reduced? (6)
 b. Compare coherent and non-coherent digital modulation techniques. (6)
 Windth and the fourth of the data is the state of t
 - c. Highlight the role of synchronization in digital modulation. (4)
- Q.7 a. Consider the four signals s₁(t), s₂(t), s₃(t) and s₄(t) as shown in Fig.7.1. Use Gram-Schmidt Orthogonalization Procedure to find the orthonormal basis for this set of signals. Also express the signals in terms of the basis functions. (6)

- b. Draw the block diagram of Correlative receiver and explain function of each block. (4)
- c. Discuss detection of known signals in noise.
- Q.8 a. What is spread spectrum. Sketch the model of direct sequence spectrum system with BPSK modulation and analyze it.
 (6)
 - b. Write short note on any **<u>TWO</u>**:
 - (i) Signal space dimensionality
 - (ii) Probability of error
 - (iii) Processing gain
- Q.9a. Explain practical Digital Hierarchy based on T1 carrier system.(8)b. Explain applications of Spread spectrum modulation.(8)