ROLL NO. _____

Code: AE61/AE109

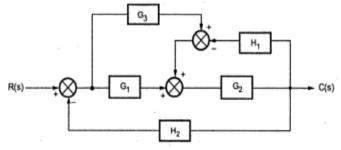
Subject: CONTROL ENGINEERING

AMIETE - ET {Current & New Scheme}

Time:	3 Hours	JUNE	2016	Max. Mark	ks: 100	
IMMI NOTI • Qu th • Th th • Ou qu	EDIATELY AFTER I E: There are 9 Quest estion 1 is compulso e space provided for e answer sheet for the e commencement of the of the remaining testion carries 16 ma	COLL NO. AT T RECEIVING TH ions in all. ry and carries 2 it in the answer the Q.1 will be co the examination EIGHT Ques rks.	THE SPACE PL THE QUESTION 20 marks. Answer book supplied llected by the i tions answer	wer to Q.1 must be written in l and nowhere else. invigilator after 45 minutes o any FIVE Questions. Each	n f	
• An Q.1	Choose the correct a. The damping rat (A) 0.353 (C) 0.300	t or the best alte to of a system ha	rnative in the f ving the charact (B) 0.330 (D) 0.250	eteristic equation s $^2+2s+8=0$ is		
	b. The open loop tr centroid is at σ_A (A) -2.5 (C) -4.5		(B) -4 (D) 0	s) $H(s) = K(s+2)/s(s+3)(s+4)$, it	S	
	 c. The steady-state error of a feedback control system with an acceleration input is finite in a (A) type 0 system (B) type 1 system (C) type 2 system (D) type 3 system 					
	 d. The impulse response of the standard second order system can be obtained from its unit step response by (A) integrating (B) differentiating (C) inverse laplace of function (D) transfer function 					
	e. The transfer fund	ction of the block	diagram shown	n in fig.1 is :-		
	R (s) +	G_1	G ₂	+ C(s)		
	(A) $\frac{G_2(G_1 + G_2)}{1 + G_1G_2H}$	$-G_3$) $-G_1G_3H$	1	$\frac{(G_2 + G_3)}{G_2H + G_1G_3H}$		
	(C) $\frac{G_1(G_2 - G_1)}{1 + G_1G_2H}$	$-G_3$) - G_1G_3H	(D) $\frac{G_1(G_2)}{1+G_1H}$	$\frac{2+G_3}{H+G_3H}$		

1

ROLL NO. _


Code: AE61/AE109

Subject: CONTROL ENGINEERING

f.	For a standard second-order system	$_{\text{described by}}$, s ² + 2 $\zeta \omega_{n}$ s + ω_{n}^{2} the				
	term $1/\zeta \omega_n$ indicates					
	(A) time-constant(C) natural frequency	(B) damping factor(D) none of these				
g.	Lead-lag compensation is needed for					
U	(A) transient response improvement					
	(B) steady state response improvement					
	(C) both transient and steady state response improvement					
1	(D) none of these					
h.	The input to a controller is					
	(A) sensed signal	(B) desired variable value				
	(C) error signal	(D) servo-signal				
i.	If the Nyquist plot of the loop transfer function $G(s)$ $H(s)$ of a close system encloses the (-1, j0) point in the $G(s)$ $H(s)$ plane, the gain margin system is					
	(A) zero	(B) greater than zero				
	(C) less than zero	(D) infinity				
j.	An n x n matrix is said to be nonsing	x n matrix is said to be nonsingular if the rank of the matrix r is				
	(A) $r < n$	(B) r.n				
	(C) $r = n/2$	(D) 2n				
	Answer any FIVE Questions out of EIGHT Questions.					

Answer any FIVE Questions out of EIGHT Questions Each question carries 16 marks.

- Q.2 a. Define control system. When is a control system said to be robust? (8)
 - b. Compare open loop and closed loop system. Justify with suitable examples. (8)
- Q.3 a. Compare with block diagram and signal flow graph, the representation of a control system.(8)
 - b. Draw the signal flow graph of the block diagram shown in Figure 2 and obtain the overall transfer function. (8)

2

Fig. 2

- Q.4 a. Explain the various types of controller components with suitable example. (6)
 - b. Define sensitivity. Discuss the sensitivity of closed loop transfer function for variation in forward path and feedback path transfer function. (10)

ROLL NO. _____

Code: AE61/AE109

Subject: CONTROL ENGINEERING

Q.5a. The transfer functions for a single-loop non-unity-feedback control system are
given as
$$G(s) = \frac{1}{s^2 + s + 2}$$
 and $H(s) = \frac{1}{s+1}$ (8)Find the steady-state errors due to a unit-step input, a unit-ramp input and a
parabolic input.b. Determine the range of K for stability of a unity -feedback control system
whose open-loop transfer function is $G(s) = \frac{K}{s(s+1)(s+2)}$ (8)Q.6Construct the root locus and comment on the stability of a unity-feedback
control system having an open-loop transfer function $G(s) = \frac{K}{s(s+1)(2s+3)}$ (16)Q.7A unity-feedback system has open-loop transfer function $G(s) = \frac{4}{s(s+1)(s+2)}$
(i) Using Bode plots, determine the phase margin of the system.
(ii) How should the gain be adjusted so that phase margin becomes $50^{\circ?}$ (8+8)
(i) Controller tuning
(ii) Phase-lead compensationQ.9a. Find the state transition matrix for
 $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$ b. Evaluate Observability and Controllability of the following state model
 $0 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}$ B = $\begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix}$ C = $\begin{bmatrix} 0 & 0 & 1 \\ 0 \end{bmatrix}$

AE61/AE109/June 2016 3 AMIETE - ET {Current & New Scheme}