ROLL NO.

Code: AE54/AC54/AT54/AE104

Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE - ET (Current & New Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. An ideal operational amplifier has

(A) Infinite output impedance	
(C) Infinite bandwidth	

(B) zero input impedance(D) All of these

b. What is the output waveform of the following network?

- (A) Sine wave(B) Square wave(C) Triangular wave(D) Saw tooth wave
- c. What starts a free-running multivibrator?

(A) a trigger	(B) an input signal
(C) an external circuit	(D) nothing

d. What will be the binary equivalent of the decimal number 151.75?

1

(A) 10000111.11	(B) 11010011.01
(C) 00111100.00	(D) 10010111.11

Code: AE54/AC54/AT54/AE104	Subject: LINEAR ICs & DIGITAL ELECTRONICS		
e. The 555 timer can be used in which (\mathbf{A}) actually memory table			
(A) astable, monostable(C) astable, toggled	(B) monostable, bistable(D) bistable, tristable		
f. When both inputs of a J-K flip-fl	f. When both inputs of a J-K flip-flop reset, the output will:		
(A) be invalid(C) change	(B) not change(D) toggle		
g. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010.			
(A) 0.3125 V (C) 0.78125 V	(B) 3.125 V (D) -3.125 V		
h. Which of the following expression	h. Which of the following expressions is in the sum-of-products (SOP) form?		
(A) $Y = (A + B)(C + D)$	$(\mathbf{B}) \mathbf{Y} = \mathbf{AB}(\mathbf{CD})$		
(C) $Y = AB + \overline{A}B$	$(\mathbf{D}) Y = (\overline{A} + \overline{B}).(A + B)$		
i. A basic S-R flip-flop can be c basic logic gates?	flip-flop can be constructed by cross-coupling of which of the tes?		
(A) AND or OR gates(C) NOR or NAND gates	(B) XOR or XNOR gates(D) AND or NOR gates		
j. The Schmitt trigger is a two-state	e device that is used for:		
(A) pulse shaping(C) input noise rejection	(B) peak detection(D) filtering		

PART (A) Answer at least TWO Questions. Each question carries 16 marks.

- Q.2 a. Classify ICs on the basis of application, devices used and chip complexity. (6)
 - b. Calculate the output voltage from the circuit of Fig.2 for an input of 120 μ V. (4)

c. Draw and explain the block diagram of op-amp. Also explain the basic differential amplifier. (6)

Q.3 a. For the Instrumentation amplifier as shown in Fig 3. Verify that $V_0 = \left[1 + \frac{R_2}{R_1} + \frac{2R_2}{R}\right] (V_2 - V_1)$ (8)

Fig. 3

b. The output of op-Amp Voltage follower is a Triangular wave as shown in Fig.4 for a square wave input of frequency 2MHz and 8 V peak to peak amplitude. What is the slew rate of op-Amp?

- Q.4 a. Draw a sample and hold circuit. Explain its operation and indicate its uses. (8)
 - b. Explain the following:
 - (i) Transconductance Amplifier
 - (ii) Schmitt Trigger
- Q.5 a. Draw and explain the operation of triangular wave generator. (8)
 - b. What do you understand by DAC techniques? List its various types and explain any one of these. (8)

(8)

ROLL NO.

Subject: LINEAR ICs & DIGITAL ELECTRONICS

(8)

PART (B)

Answer at least TWO Questions. Each question carries 16 marks.

- **Q.6** a. Explain the following:
 - (i) De Morgan's theorem
 - (ii) Universal logic gates
 - (iii) Alphanumeric codes
 - (iv) Advantages of digital techniques over analog
 - b. Represent each of the following signed decimal numbers as a signed binary numbers in the 2's complement system. Use a total of five bits, including the sign bit.

(i) + 13 (ii) - 9 (iii) + 3 (iv) - 8 (8)

Q.7 a. Reduce the combinational logic circuit given in the Fig. 5 to a minimum form. (6)

Fig.5

- b. Design a logic circuit that has three inputs, A, B, and C and whose output will be HIGH only when a majority of inputs are HIGH. (4)
- c. Draw K-map and simplify the given expression: (6) f(A,B,C) = AB + A(B+C) + B(B+C)
- Q.8 a. Explain the designing of full adder with a neat diagram. (4)
 b. Implement Full Adder using multiplexers. (4)
 c. Explain the working of a J-K flip flop? Design DFF using JKFF. (8)
 Q.9 a. Explain with a neat diagram, the working of synchronous MOD-16 counter. List the advantages of synchronous counters over asynchronous counters. (8)
 - b. Explain **any two** of the following:
 - (i) Ring counter
 - (ii) D latch
 - (iii) Serial in parallel out Shift Register
 - (iv) Propagation delay in Ripple Counter

4

(8)