ROLL NO. _____

Code: AE123

Subject: POWER ELECTRONICS

AMIETE – ET (New Scheme)

Time: 3 Ho	ours	JUNE	2016	Max. Marks: 10			
PLEASE V VMMEDIA NOTE: Th	<i>VRITE YOUR TELY AFTER</i> lere are 9 Ques	ROLL NO. AT T RECEIVING TH ations in all.	HE SPACE PH E QUESTION	ROVIDED ON EACH PAGE PAPER.			
 Questio the spa The ans 	n 1 is compuls ce provided fo wer sheet for t	ory and carries 20 r it in the answer the O 1 will be col	0 marks. Answ book supplied lected by the ir	ver to Q.1 must be written in and nowhere else.			
the con	imencement of	the examination.					
 Out of questio 	the remaining n carries 16 m	g EIGHT Quest arks.	ions answer a	any FIVE Questions. Each			
• Any req	uired data not	explicitly given, i	may be suitably	y assumed and stated.			
Q.I Ch	Choose the correct or the best alternative in the following: $(2 \times C + C) = C$ subher circuit is used to limit rate of						
u.	(A) rise of curr (C) conduction	ent in SCR period	(B) rise of v (D) all of the	oltage across SCR ese			
b.	In an SCR hold (A) equal to lat (C) more than b	ling current is ching current atching current	(B) less than(D) not relate	a latching current red to latching current			
c. *	 c. Turn-on time of SCR in series with RL circuit can be reduced by (A) Increasing circuit resistance R (B) Decreasing R (C) Increasing circuit inductance L (D) Decreasing L 						
d.	The ripple cont (A) load resista (B) load induct (C) both load re (D) none of the	ent of load current nce alone ance alone esistance and induc se	of a converter f	eeding RL load is decided by			
e. '	The advantage conduction mo (A) it needs les (B) there is no (C) the devices (D) the load te	of 180 ⁰ conducted is that of some switches paralleling of switch in series are not si rminal are not left of	tion mode of ches multaneously sy open during swi	three phase VSI over 120 ⁰ witched tching			
f. 1	For continuous should conduct (A) π	conduction each for	thyristor pair o (B) π-α	of a two pulse full converter			
g.	(C) $\pi + \alpha$ A CSI is norma (A) if the sourc (B) if the sourc (C) if the load p (D) on any source	lly employed e inductance is sma e inductance is larg oure inductive load rce irrespective of i	(D) α all ge ts impedance				

ROLL NO. _____

Code: AE123	

Subject: POWER ELECTRONICS

	h.	a. The output voltage of a two quadrant chopper designed for operation in I a IV quadrants					
		(A) varies from $+V_d$ to $-V_d$ (C) varies from 0 to $-V_d$	(B) varies from 0 to $+ V_d$ (D) varies from 0 to $0.5V_d$				
	i.	The softness factor for soft-recovery (A) 1 and >1 (C) 1 and 1	 and fast recovery diodes are respectively (B) <1 and 1 (D) 1 and <1 				
	j.	SMPSs are superior to linear power s(A) size and efficiency(C) regulation and noise	 supplies in respect of (B) efficiency and regulation (D) noise and cost 				
Answer any FIVE Questions out of EIGHT Questions.							
Q.2	a.	Explain Reverse Recovery Character MOSFET with BJT.	eristics of a Power Diode. Compare power (4+4)				
	b.	Derive the approximate and exact ex 'latch up' for IGBT.	quivalent circuits of an IGBT. Analyze the (5+3)				
Q.3	a.	Explain the two transistor model of the thyristor. Explain RC firing circuit with suitable circuit diagram and waveforms. (5+5)					
	b.	Explain the complementary commemployed for thyristor circuits.	nutation method with relevant waveforms (6)				
Q.4	a. b.	Explain the effect of source inductance on the performance of 1- Φ full bridge rectifiers. (6) Describe the working principle of single-phase half controlled bridge rectifier for RL load with a neat sketch. (5)					
	c.	A single-phase half wave controlled supply. The load resistance is 10Ω . of maximum possible output voltage (i) Firing angle	 d rectifier is fed from 400V, 3-phase mains lf the average value of load voltage is 25% e. Find (ii) rms and average output current. (5) 				
Q.5		Draw the circuit diagram of a 3-pha load. Explain its working with the load voltage, load current and source	ase half wave thyristor converter feeding R help of neat waveforms and expression of e voltage for a firing angle of				
Q.6	a.	(i) $0 < \alpha < 30^{\circ}$ Explain the principle of step down waveforms.	(ii) $\alpha > 30^{\circ}$ (4+6+6) chopper with relevant circuit diagram and (8)				
	b.	A step up chopper has a supply vol the conducting period of chopper r i (i) pulse width of the output voltag (ii) If the pulse width is reduced to find the output voltage.	tage of 220V while output voltage 660V.If s 100 μ sec. Determine: ge o1/2 for the constant frequency operation, (8)				
Q.7	a.	Explain with relevant circuit diagra for 180° and 120° conduction mode.	m and waveforms for 3-phase VSI inverter (10)				
	b.	Explain with relevant circuit diagra control.	am and waveforms pulse width modulation (6)				

Code: AE123

- Q.8 a. Explain with relevant circuit diagram and waveforms for 1-phase voltage controller. (8)
 - b. A single phase bridge type cycloconverter has input voltage of 230V, 50Hz and load of R=10 ohm. Output frequency is one third of input frequency. For a firing angle of 30⁰, calculate:
 (i) rms value of output voltage
 (ii) rms current of each converter
 (8)
- Q.9 a. Write a short note on: (i) UPS (ii) Static VAR Controller (SVC) (10)
 - b. Explain the operation and working of a Flyback SMPS with the help of a block diagram. (6)