ROLL NO.

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMAL LANGUAGES

AMIETE – CS (Current & New Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If x = 1010 and y = 0011 then the concatenation is given by

(A) 1101	(B) 10100011
(C) 00111011	(D) 1011

b. The highest type number which can be applied to the grammar $S \rightarrow aSb \mid ab \mid aA$ is

(A) 2	(B) 1
(C) 0	(D) 4

c. If L is recursive then \overline{L} is:

(A) Recursively enumerable	(B) Regular
(C) Recursive	(D) CFG

d. A type 3 grammar is also known as:

(A) Context sensitive	(B) Context free
(C) Recursive	(D) Regular

e. The regular expression for $L = \{a, aa, aaa,\}$ is given by

(A) a [*]	(B) a ⁺
(\mathbf{C}) a + aa + aaa	(D) None of these

f. The halting problem of Turing machine is:

(A) Decidable	(B) Recursive
(C) Undecidable	(D) None of these

1

ROLL NO.

Code: AC68/AC120 Subject: FINITE AUTOMATA & FORMAL LANGUAGES

- g. A CFG is converted into CNF to
 - (A) Incorporate ambiguity (B) Reduce productions
 - (C) Remove ambiguity (D) None of these
- h. If there are 4 states in an NDFA, the corresponding DFA will have at most or maximum

(A) 4 states	(B) 8 states
(C) 16 states	(D) 12 states

i. Which of the following is not a palindrome?

(A) xxyxx	(B) xzyxyzx
(C) yzyxyzy	(D) xyzyz

j. Consider the production rules $S \rightarrow 0S1 \mid 01.$ The language generated by these rules is

(A) $L(G) = \{0^n 1^n \mid n \ge 0\}$	(B) $L(G) = \{0^n 1^n \mid n \ge 1\}$
(C) $L(G) = \{(01)^n \mid n \ge 1\}$	(D) $L(G) = \{(01)^n \mid n \ge 0\}$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- **Q.2** a. Prove by mathematical induction $2^x \ge x^2$ for all $x \ge 4$.
 - b. Define finite automata. Show that the string baababaab is accepted by the finite machine whose state transition table is given below: (8)

State	Input	
	а	b
Start State q ₀	q_0	q_{0}, q_{1}
q_1	q_2	
q_2	q_4	q ₃
q ₃	q 5	
q_4		q 5
Final State q ₅	q 5	q ₅

Q.3 a. Find a DFA that accepts the language defined by the NFA, $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_3\})$ where δ is given as follows: (8)

State	Input	
	0	1
q_0	q_0, q_1	q_0
q_1	q_2	q_1
q_2	q ₃	q ₃
q ₃		q ₂

2 AMIETE - CS (Current & New Scheme)

(8)

		ROLL NO	
	S	Code: AC68/AC120 ubject: FINITE AUTOMATA & FORMAL LANGUAGES	
	b.	Design DFA over $\sum = \{0, 1\}$ for the following: (i) L = {w w mod 3 = 0} (ii) L = {w w mod 3 = 1}	(8)
Q.4	a.	Give a grammar that specifies each of the following languages: (i) $L = \{aaaa, aabb, bbaa, bbbb\}$ (ii) $L = \{x \mid x \in (a, b)^*, \text{ the number of a's in x is a multiple of 3}\}$	(8)
	b.	Enumerate different types of grammar under Chomsky Hierarchy with subexamples.	itable (8)
Q.5	a.	Show that $L = \{a^n b^n n > 0\}$ is not a regular set.	(8)
	b.	Define regular expression. Let $\sum = \{a, b\}$. Write regular expressions for the following: (i) All strings in \sum^{*} with ending at ab. (ii) All strings in \sum^{*} with no more than three a's.	e (4x2)
Q.6	a.	Construct a context free grammar generating the following language: $\{a^nb^n \mid n \ge 1\} \cup \{a^mb^{2m} \mid m \ge 1\}$	(8)
	b.	Construct a push down automata accepting $L = \{a^n c b^{2n} \mid n \ge 1\}$ by null stor	re.
Q.7	a.	Define the two normal forms Chomsky and Greibach for context free gran	(8) nmar.
	b.	Let G be S \rightarrow AB, A \rightarrow a, B \rightarrow C b, C \rightarrow D, D \rightarrow E and E \rightarrow a. Eliminat unit productions and get an equivalent grammar.	(8) te the (8)
Q.8	a.	Define Turing machine. Construct a Turing machine that replaces every a string of a's and b's with b and every b with a.	in the (8)
	b.	Prove that a halting problem of Turing machine is undecidable.	(8)
Q.9	a.	Define the following languages. Also show the pictorial representation bet them: (i) Recursively enumerable (ii) Recursive, and (iii) Non-recursively enumerable	ween (10)
	b.	Does the Post Correspondence Problem (PCP) with two lists $x = (b, bab and y = (b^3, ba, a)$ have a solution?	³ , ba) (6)