ROLL NO. _

Code: AC64/AT64/AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

AMIETE – CS/IT (Current & New Scheme)

Time: 3 Hours

JUNE 2016

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: (2×10) 0.1 a. For the Euclid's algorithm indicate its basic operation (A) Addition of two numbers (**B**) Multiplication of two integers (C) Comparison of two numbers **(D)** Modulo division b. Two main measures for the efficiency of an algorithm are (A) Processor and memory (B) Complexity and capacity (C) Time and space (**D**) Data and space c. Find the number of comparisons made by the sentinel version of sequential search in the worst case. (A) n **(B)** (n+1) **(D)** (n–1) (C) n/2d. In a binary tree, certain null entries are replaced by special pointers which point to nodes higher in the tree for efficiency. These special pointers are called (A) Leaf (**B**) Branch (C) Path (D) Thread e. If every node u in G is adjacent to every other node v in G, A graph is said to be (A) Isolated (**B**) Complete (C) Finite (D) Strongly connected f. The upper bound on the time complexity of the nondeterministic sorting algorithm is (A) O (n) **(B)** O (n lg n) **(C)** O(1) **(D)** O (lg n) g. What would be the depth of tree whose level is 9? **(A)** 10 **(B)** 8 (**C**) 9 **(D)** 11

ROLL NO.

Code: AC64/AT64/AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

h. A node of a directed graph G having no out-degree and a positive in-degree is called

- (A) Source node
- (C) Sibling node

(**B**) Sink node

- (**D**) Null node
- i. The asymptotic notation for defining the average time complexity is (A) Equivalence (**B**) Symmetric (C) Reflexive (**D**) Transitive
- j. The following are the statements regarding the NP problems. Choose the right option
 - from the following options: All NP-complete problems are not NP-hard. I.
 - Some NP-hard problems are not known to be NP-complete. II.

(A) Both (I) and (II) are true

(C) Only (I) is true

(B) Both (I) and (II) are false (D) Only (II) is true

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- a. What is the smallest value of n such that an algorithm whose running time is $100n^2$ **O.2** runs faster than an algorithm whose running time is 2^n on the same machine? (8)
 - b. int f(int x) $\{$ if (x < 1) return 1; else return f(x-1) + g(x); } int g(int x) { if (x < 2) return 2; else return f(x-1) + g(x/2); } What best describes the growth of f(x) as a function of x? Give f(x). (8)
- a. Justify whether or not the function [lg n]! and [lglg n] is polynomially bounded? What 0.3 is the asymptotic behaviour of these functions w.r.t. the polynomial functions? (8)
 - b. Consider the analysis of linear time selection algorithm for groups of k. Let $x \ge \lfloor k/2 \rfloor$ ($\lfloor 1/2 \lfloor n/k \rfloor \rfloor$ -2). Solve the recurrence by substitution, $T(n) \le T(\lfloor n/k \rfloor) + T(n-k)$ x)+O(n) and mention worst case time complexity for groups of 5,3. (8)
- a. While comparing implementations of insertion sort and merge sort on the same **Q.4** machine, for inputs of size n, insertion sort runs in $8n^2$ steps, while merge sort runs in (64 n lg n) steps. For which threshold value of n does insertion sort beats merge sort? Given the complexity, if a binary search is used to improve the worst-case running time of insertion sort. (8)
 - b. What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply n×n matrices in time $O(n^{lg7})$? What would be running time of this algorithm? (8)

ROLL NO.

Code: AC64/AT64/AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

- Q.5 a. A table with row and column labels WHITE, GRAY, and BLACK. Indicate for each cell (i, j) whether, at any point during a DFS of a directed graph, there can be an edge from a vertex of *color i* to a vertex of *color j*. For each possible edge, indicate what edge types it can be. Also make the table for the DFS of an undirected graph. (8)
 - b. Another way to perform topological sorting on a directed acyclic graph G = (V,E) is to repeatedly find a vertex of in-degree 0 (zero), output it, and remove it and all of its outgoing edges from the graph. Explain how to implement this idea so that it runs in time O(V+E). (8)
- Q.6 a. Consider the following variation of the BOTTOM-UP HEAP CONSTRUCTION procedure. (8)

BOTTOM-UP-HEAP'(A)	HEAP-INCREASE-KEY (A, i, key)
A.heap-size $= 1$	1 if $key < A[i]$
for $i = 2$ to A.length	2 error "new key is smaller than current key"
MAX-HEAP-INSERT(A, A[i])	3 $A[i] = key$
MAX-HEAP-INSERT (A, key)	4 while $i > 1$ and $A[PARENT(i)] < A[i]$
1 $A.heap-size = A.heap-size + 1$	5 exchange $A[i]$ with $A[PARENT(i)]$
2 $A[A.heap-size] = -\infty$	6 i = PARENT(i)
3 HEAP-INCREASE-KEY (A, A.heap-size, key)	

Does the procedures BOTTOM-UP HEAP CONSTRUCTION and BOTTOM-UP-HEAP' always create the same heap for the list (1, 2, 3, 4, 5, 6)? Give the worst case complexity of BOTTOM-UP-HEAP' to build n-element heap.

- b. In context to AVL trees, draw diagrams of the single L-rotation and of the double RL-rotation in their general form. (8)
- Q.7 a. For the bottom-up dynamic programming algorithm for the knapsack problem, prove that, (i) its time efficiency is θ (nW) (ii) its space efficiency is θ (nW) (iii) the time needed to find the composition of an optimal subset from a filled dynamic programming table is O (n). (8)

b. Indicate whether the following statements are true or false: (8)
(i) If e is a minimum-weight edge in a connected weighted graph, it must be among edges of at least one minimum spanning tree of the graph.
(ii) If e is a minimum-weight edge in a connected weighted graph, it must be among edges of each minimum spanning tree of the graph.

(iii) If edge weights of a connected weighted graph are all distinct, the graph must have exactly one minimum spanning tree.

(iv) If edge weights of a connected weighted graph are not all distinct, the graph must have more than one minimum spanning tree.

- Q.8 a. Find the probability of all n keys being hashed to the same cell of a hash table of size m if the hash function distributes keys evenly among all the cells of the table. (8)
 - b. In which context does the NP algorithms is polynomial? Give example of the running time of P and NP algorithms. (8)
- Q.9 a. In context to n-queen problem, give the possible placement of queen if the queen in the table is placed at T[0,3] and draw the table.(8)
 - b. TSP: How will you show that there exists a lower bound for the travelling salesman problem? (8)