ROLL NO. _____

Code: AC111/AT111 Subject: COMPUTER GRAPHICS & VISUALIZATION

AMIETE – CS/IT (New Scheme)

Tima	· 3 Hours	JUNE 2016	Max Marke 100			
	A CE MOITE VALD DAT					
rlEa IMM	ASE WKITE YOUK KOLI TEDIATELY AFTER RECT	2 NU. AT THE SPACE PROVID FIVING THE OUESTION PAPER	ED UN EACH PAGE			
NOT	EDIATELT AT TEX REC		1,			
	L: There are 9 Questions uestion 1 is compulsory a	III all. nd carries 20 marks Answer to C) 1 must he written in			
tł	ne space provided for it in	the answer book supplied and no	where else.			
• Tl	he answer sheet for the Q.	1 will be collected by the invigilat	or after 45 minutes of			
tł	ne commencement of the e	xamination.				
• 0	ut of the remaining EI	GHT Questions answer any FI	VE Questions. Each			
q	uestion carries 16 marks.					
• A	ny required data not expli	citly given, may be suitably assun	ned and stated.			
Q.1	Choose the correct or t	he best alternative in the followin	g: (2×10)			
	a. Each screen point is r	eferred to as				
	(A) Resolution	(B) Pixel				
	(C) Persistence	(D) Dot Pitch				
	b. In CRT, the electron intensity is adjusted using					
	(A) Accelerating another	de (B) Control grid				
	(C) Electron gun	(D) Focusing anode				
	c. Lower persistence phosphorus is used in					
	(A) Animation	(B) Simple object				
	(C) Complex object	(D) All of these				
	d Memory area holding	d Memory area holding the intensity information of an image is called				
	(A) Refresh buffer	(B) Font cache	ge is called			
	(C) Picture definition	(D) video controller	ſ			
	e. Digitizing a picture d	. Digitizing a picture definition into a set of intensity values is known as				
	(A) Digitization	(B) Scan conversion	n			
	(C) Refreshing	(D) Scanning				
	f. The transformation in	The transformation in which an object is moved in a minimum distance path				
	from one position to a	another is called	r			
	(A) Rotation	(B) Replacement				
	(C) Translation	(D) Scaling				
	g. Coordinates of windo	w are known as				
	(A) Screen coordinate	es (B) World coordina	tes			
	(C) Device coordinate	es (D) Cartesian coord	inates			
	h. In Bresenham's algori	thm, while generating a circle, it is	easy to generate?			
	(A) One octant first a	nd other by successive reflection	J			
	(B) One octant first a	nd other by successive rotation				
	(C) One octant first a	nd other by successive translation				
	(D) All octants					

1

ROLL NO. ___

Code: AC111/AT111 Subject: COMPUTER GRAPHICS & VISUALIZATION

i.	Why a circle drawn on the screen appears to be elliptical?		
	(A) It is due to the aspect ratio of monitor		
	(B) Screen has rectangular shape		
	(C) Our eyes are not at the same level on screen		
	(D) CRT is completely spherical		
j.	. In bresenham's algorithm error term is initialized to ?		
	(A) 0 (B) 1		
	$(\mathbf{C}) - 1/2 \qquad \qquad (\mathbf{D}) \text{ None of these}$		

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	How Interactive graphics system is more useful than non-interactive systems?	
	b.	Give very brief description of (i) Input devices (ii) GUI (iii) Tablet	(8)
Q.3	a.	Develop the Bresenham's line drawing to draw lines of any scope.	(8)
	b.	Differentiate Bresenham's and DDA line drawing Algorithm.	(8)
Q.4	a.	Explain fill area attributes and scan line polygon filling algorithm with the help of example? (8)	
	b.	Explain aliasing and anti-aliasing with example.	(8)
Q.5	a.	Use the Cohen Sutherland algorithm to clip line $P1(70,20)$ and $P2(100,1)$ against a window lower left hand corner (50,10) and upper right hand corner (80,40). (8)	
	b.	Describe the Sutherland-Hodgeman polygon clipping algorithm.	(8)
Q.6	a.	Prove that simultaneous shearing in both direction (x & y direction) is n equal to the composition of pure shear along x-axis followed by pure she along y-axis. (8)	
	b.	Write and explain homogeneous co-ordinate system. Why it is required to b considered while transforming an object from one reference frame to othe reference frame? (8)	
Q.7	a.	What is animation?	(8)
	b.	What are the different methods to produce real time animation?	(8)
Q.8	a.	What is an illumination model?	(8)
	b.	Develop an illumination model to consider ambient light, specular refle and diffused reflection.	ection (8)
Q.9	a.	What is virtual reality?	(8)
	b.	What is the main purpose of openGL?	(8)