Diplete – Et (NEW SCHEME) – Code: DE65

Subject: CONTROL ENGINEERING

Time: 3 Hours

JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. What is not true in respect of presence of negative feedback in the system?

(A) increases accuracy	(B) causes instability
(C) reduces effect of noise	(D) decreases bandwidth

- b. The equation relating the voltage v(t) and current i(t) for $t \ge 0$ for a series RLC circuit with zero current at the time of closure of switch and zero charge on C at t = 0 is given by:
 - (A) $i(t)(R + \omega L + 1/\omega C) = v(t)$ (B) $Ld^2 i(t)/dt^2 + R di/dt + 1/C = dv/dt$ (C) $i(t)[R^2 + (\omega L - \omega C)^2]^{1/2} = v(t)$ (D) None of the above
- c. A temperature control system is known as :
 - (A) process control system
 - (B) cascade control system
 - (C) servomechanism
 - (**D**) open loop control system
- d. Routh Hurwitz criterion gives the number of:
 - (A) roots in right half of s-plane
 - (**B**) roots in left half of s-plane
 - (C) roots in right half of s-plane and / or roots on imaginary axis
 - (D) roots in left half of s-plane and / or roots on imaginary axis

1

e. A system has transfer function (1 - s)(1 + s). It is known as:

(A) low pass system	(B) high pass system
(C) band pass system	(D) all pass system

f. The initial slope of the Bode plot for a type 2 system intersects 0 dB axis at :

$(\mathbf{A}) \ \boldsymbol{\omega} = 0$	(B) $\omega = k$
(C) $\omega = k^{1/2}$	(D) $\omega = k^2$

g. Given that the transfer function G(s) is $k/(s^2(1+s))$, state the type and order of the system:

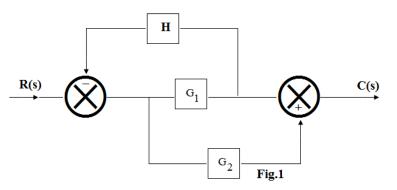
(A) 2 and 3	(B) 3 and 2
(C) 3 and 3	(D) 1 and 3

h. The effect of adding poles and zeroes can be determined quickly by:

(A) Nicholos chart	(B) Nyquist plot
(C) Bode plot	(D) Root locus

i. Phase angle of a system is used to specify:

(A) absolute stability	(B) relative stability
(C) time response	(D) frequency response


j. The initial slope of the bode plot for a transfer function having no poles at origin is :

$(\mathbf{A}) - 10 \text{ dB} / \text{decade}$	(B) 0 dB / decade
(C) 10 dB / decade	(D) 24 dB / decade

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. With examples, explain open loop & closed loop control systems and analog & digital control systems. (10)
 - b. With the help of a neat block diagram, explain the working of a computer controlled system. Give one typical example of a physical system using computer control. (6)
- Q.3 a. What are steady state response and transient response of a control system? Give the total response y(t) of the differential equation : $(d^2y/dt^2) + 3 dy/dt + 2y = 1$ with initial conditions y(0) = 0 and $(dy/dt)_{t=0} = 1$. (8)

- b. What are poles and zeroes of F(s)? Draw the pole zero map of F(s) where $F(s) = \left(2s^2 - 2s - 4\right) / \left(s^3 + 5s^2 + 8s + 6\right)$ (8)
- Q.4 a. What is Routh stability criterion? How is it applied? State the properties of a continuous system transfer function. (8)
 - b. What are the steps involved in evaluating the performance of multiple inputs to a control system? What are the conditions for this evaluation? Explain with a typical example.
 (8)
- Q.5 a. What is a signal flow graph, a node and a branch? Explain with suitable diagrams. State and explain the rules of algebra of signal flow graph. (8)
 - b. Draw the signal flow graph for the block diagram given in Fig.1. Find the transfer function using Mason's Gain formula. (8)

- Q.6 a. Give definitions of the sensitivity for the mathematical model T(k), the transfer function of a linear time-invariant system, its magnitude and its phase angle with respect to parameter k. Explain with the help of an example. (6)
 - b. How are the error constants for more general systems related to those of continuous unity feedback systems? Enumerate the design methods for analysis and design of control system. (10)
- **Q.7** a. Sketch the Nyquist Stability Plot for $GH(s) = 1/s^2(s+p), p > 0$. (10)
 - b. State and explain the Nyquist stability criterion. (6)
- **Q.8** a. With a typical example, illustrate the construction of the root-locus for a closed loop continuous system with a given open loop transfer function. (10)
 - b. How will you determine the gain and phase margins from the root-locus (6)
- Q.9 a. How does a Bode-plot method differ from Nyquist analysis of Control systems? Why logarithmic scale is used for drawing bode plot? (6)
 - b. Give the Bode plot of the transfer function G H(s) = 1/(s+1). (10)

3