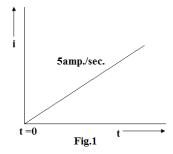
## Diplete - Et (NEW SCHEME) - Code: DE57

## **Subject: NETWORKS AND TRANSMISSION LINES**

| Time:                                       | 3 Hours                                                                                                                                       | <b>JUNE 2011</b>                                                                                          | Max. Marks: 100                                       |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| <ul><li>Qu the the the the the qu</li></ul> | e space provided for it in to<br>e answer sheet for the Q.1<br>e commencement of the ex<br>t of the remaining EIG<br>estion carries 16 marks. | d carries 20 marks. Answer to Q<br>the answer book supplied and no<br>will be collected by the invigilate | where else. or after 45 Minutes of VE Questions. Each |
| Q.1                                         | Choose the correct or the best alternative in the following: $(2\times10)$                                                                    |                                                                                                           |                                                       |
|                                             | a. Identify the passive element among the following:                                                                                          |                                                                                                           |                                                       |
|                                             | <ul><li>(A) Voltage source</li><li>(C) Inductor</li></ul>                                                                                     | <ul><li>(B) Current source</li><li>(D) Transistor</li></ul>                                               |                                                       |
|                                             | b. The power dissipation in each of 3 parallel branches is 1W, what is the total power dissipation of the current?                            |                                                                                                           |                                                       |
|                                             | (A) 1W<br>(C) 3W                                                                                                                              | ( <b>B</b> ) 4W<br>( <b>D</b> ) 0                                                                         |                                                       |
|                                             | c. Mesh analysis is based on                                                                                                                  |                                                                                                           |                                                       |
|                                             | <ul><li>(A) Kirchoff's current</li><li>(C) Both</li></ul>                                                                                     | law <b>(B)</b> Kirchoff's volta <b>(D)</b> None                                                           | ge law                                                |
|                                             | d. If a network has B branches, N nodes, then the number of mesh current equations would be                                                   |                                                                                                           |                                                       |
|                                             | (A) B –(N–1)<br>(C) B–N–1                                                                                                                     | ( <b>B</b> ) N–(B–1)<br>( <b>D</b> ) (B+N) –1                                                             |                                                       |
|                                             | e. Superposition theorem is not valid for                                                                                                     |                                                                                                           |                                                       |
|                                             | <ul><li>(A) Voltage responses</li><li>(C) Power responses</li></ul>                                                                           | <ul><li>(B) Current respons</li><li>(D) All of the above</li></ul>                                        |                                                       |
|                                             | f. When the superposition theorem is applied to any circuit, the dependent voltage source in the circuit is always                            |                                                                                                           |                                                       |
|                                             | <ul><li>(A) Opened</li><li>(C) Active</li></ul>                                                                                               | ( <b>B</b> ) Shorted ( <b>D</b> ) None of the abo                                                         | ove                                                   |

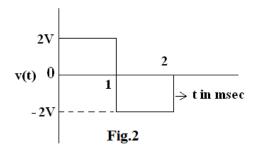
- g. The venin's impedance  $Z_{\text{TH}}$  is found by
  - (A) short circuiting the given 2 terminals
  - (B) between any two open terminals
  - (C) removing voltage sources along with terminal resistances
  - (**D**) between same open terminals as  $V_{th}$
- h. The transient response occurs
  - (A) Only in resistive circuits
- **(B)** Only in inductive circuits
- (C) Only in capacitive circuits
- (D) Both (B) and (C)
- i. Transient current in an RLC circuits is oscillatory when
  - $(\mathbf{A}) \ \mathbf{R} = 2\sqrt{\frac{\mathbf{L}}{\mathbf{C}}}$

**(B)** R=0

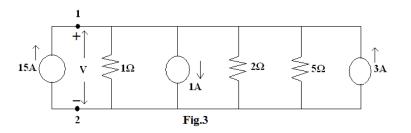

(C)  $R > 2\sqrt{\frac{L}{C}}$ 

- **(D)**  $R < 2\sqrt{\frac{L}{C}}$
- j. Which parameters are widely used in transmission line theory?
  - (A) Z-parameters

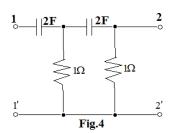
- (B) Y-parameters
- (C)ABCD parameters
- (D) H-parameters


## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

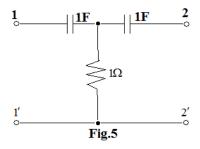
- **Q.2** a. The current in a 3 henry inductor varies as shown in Fig.1. Find the following quantities after the current has flown for two seconds:
  - (i) flux linkage in the system
  - (ii) the time rate of change of flux linkages in the system
  - (iii) the quantity of charge having passed through the inductor.




b. Consider a waveform of voltage given in Fig.2 applied to an inductor of 2 mH. Obtain the waveforms of current in the inductor. Assume that at t=0 the energy and thus current in it to be 0. (8)

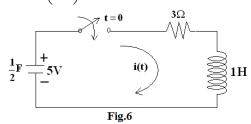

**(8)** 



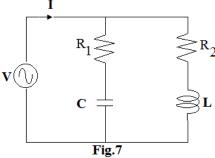

- Q.3 a. A voltage pulse of width b and magnitude 8 volts is applied at time t=0 to a series R-C circuit comprising a resistor  $R=1\Omega$  and capacitor  $C=\frac{1}{4}$  farad. Find the current i(t). Assume zero charge across the capacitor C before application of voltage pulse. (8)
  - b. State and prove initial and final value theorems. (8)
- **Q.4** a. Consider the network reduce it to a single current source and single resistor network at the terminals 1 and 2. Also find the voltage V across them (Fig.3).



- b. State and prove superposition theorem. Also give its significance. (8)
- Q.5 a. Find the y-parameters for the given R.C. ladder network. (Fig.4) (8)




b. Find the transmission parameters for the given R-C network shown in Fig.5.(8)




**(8)** 

**Q.6** a. Find the current i(t) in the network (Fig.6), if the switch is closed at t = 0. The voltage across capacitor at  $t(0^-)$  is 5V. (8)



b. Draw the phasor diagram and derive the condition for resonance in a parallel RLC circuit shown in Fig.7. (8)



- Q.7 a. A lossless line of  $400\,\Omega$  of length 150 cm is exerted by an ac source at 600MHz frequency. The I voltage minima was observed at a distance of 28 cm from the load. If the VSWR is 2.077. Find the input impedance and load impedance. (8)
  - b. The characteristics impedance of a certain line is  $710 \, | \, 14$  and the propagation constant is 0.007 + j0.028/km. The line is terminated in a  $300 \, \Omega$  resistor. Calculate the input impedance of the line if its length is  $100 \, \text{km}$ . (8)
- **Q.8** Write short notes on any <u>TWO</u> of the following:
  - (i) Quarter wave short circuit line.
  - (ii) Half wave short circuited line
  - (iii) Quarter wave open circuited line.
  - (iv) Half wave open circuited line.

(8+8)

- Q.9 a. Derive equations for phase shift and attenuation constant for constant K LPF and HPF. (8)
  - b. Design the elements of a symmetrical Bridged T attenuator. (8)