Diplete - ET (OLD SCHEME)

Subject: DIGITAL ELECTRONICS Code: DE09 **Time: 3 Hours** Max. Marks: 100 **JUNE 2011**

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written
- T

• An	Choose the correct or the best alternative in the following:				
	a.	The parity of the binary number 11001110 (2×10)			
		(A) is even.(C) is odd	(B) is not known(D) is same as the number of zeros		
	b. The most suitable gate for comparing two bits is				
		(A) AND (C) NAND	(B) OR (D) EX-OR		
	c.	The digital logic family has the maximum logic swing is			
		(A) I ² L (C) CMOS	(B) ECL (D) TTL		
	d.	16-line decoders required to make an 8-line-to-256-	-		
		(A) 16 (C) 32	(B) 17 (D) 64		
	e.	nsisting of six FLIP-FLOPS will have			
		(A) 6 states(C) 64 states	(B) 12 states(D) 128 states		
	f.	When representing in the following code the consecutive decimal numbers differ only in one bit is			
		(A) Excess-3(C) BCD	(B) Gray(D) Hexadecimal		
	g.	The speed of conversion is maximum in			
	 (A) Successive-Approximation A/D converter (B) Parallel-Comparator A/D converter (C) Counter ramp A/D converter (D) Dual-slope A/D converter 				

		(A) not same for all digital inputs(C) 2R for each input	(B) R for each input(D) 3R for each input			
	i.	It is desired to have a 64X8 memory. The memories available are of 16X4 size. The number of memories required will be				
		(A) 8 (C) 4	(B) 6 (D) 2			
	j.	The minimum number of bits required to represent negative numbers in the range of -1 to -9 using twos complement representation is				
		(A) 2 (C) 4	(B) 3 (D) 5			
		Answer any FIVE Questions of Each question carri				
Q.2	a.	Solve the equation $23.6_{10} = X_2$ for X_2		(6)		
	b.	Add -20 with +26 using 8 bit 2's	complement arithmetic	(6)		
	c.	Convert the Decimal number 430 to its Excess-3 equivalent		(4)		
Q.3	a. Show that $XY + \overline{XZ} + X\overline{Y}Z$ ($XY + Z$) = 1 using Boolean Algorithms					
	b.	State and prove De-morgan's Theor	rems.	(8)		
Q.4	a.	a. What is a Tri-state Logic? Draw the logic diagram of Tri-state L Inverter and explain its operation with the help of truth table.				
b. Draw the K-map for the following func $F(A, B, C, D) = \sum_{i=0}^{\infty} m(1,3,5,8,9,11,15) + \frac{1}{2} m($				(8)		
Q.5	Q.5 a. What is full adder? Design the logic circuit for it using NAND ga		e circuit for it using NAND gates only.	(10)		
	b.	Implement the following function using a 4 to 1 multiplexer $F(A,B,C) = \sum m(1,3,5,6)$		(6)		
Q.6	a.	What is an Encoder? Design a 10 line to 4 line Decimal to BCD encoder		(8)		
	b.	Explain the operation of 4 bit digital comparator.		(8)		
Q.7	a.	Design a Mod-5 Synchronous counter.		(8)		
b. Give the circuit diagram of 4-bit SISO shift register and explusive working						
DE09	/ Jl	JNE - 2011 2	Diplete - ET (OLD SCHEA	۸E)		

h. In an R-2R Ladder D/A converter, the input resistance is

- Q.8 a. Differentiate between Static RAMs and Dynamic RAMs. Draw the logic diagram of a Static RAM cell and explain its operation. (10)
 - b. Compare ROM, PROM, EPROM, UVEPROM, EEPROM. (6)
- Q.9 a. Explain the operation of Successive Approximation A/D Converter. List out its main Features. (8)
 - b. A 6 bit R-2R ladder D/A converter has a reference voltage of 6.5 V. It meets Standard linearity. Find
 - (i) The Resolution in Per cent
 - (ii) The Resolution in Volts
 - (iii) The Full Scale Voltage
 - (iv) The Output Voltage for the code 011100

(8)