Code: DC08 Time: 3 Hours

## **JUNE 2011**

Subject: DATA STRUCTURES Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

## Q.1 Choose the correct or the best alternative in the following: $(2 \times 10)$

a. A list of data items, usually words or bytes, with the accessing restriction that elements can be added or removed at one end of the list only, is known as:

| (A)          | stack       | <b>(B)</b>  | memory |
|--------------|-------------|-------------|--------|
| ( <b>C</b> ) | linked list | <b>(D</b> ) | heap   |

b. A complete binary tree with the property that the value at each node is at least as large as the values at its children is known as

| <b>(A)</b> | binary search tree     | ( <b>B</b> ) AVL tree |
|------------|------------------------|-----------------------|
| <b>(C)</b> | complete balanced tree | <b>(D)</b> heap       |

c. Consider that n elements are to be sorted. What is the worst case time complexity of Shell sort:

| (A) $O(n)$                | <b>(B)</b> $O(nlog_2 n)$                           |
|---------------------------|----------------------------------------------------|
| ( <b>C</b> ) $O(n^{1.2})$ | $(\mathbf{D}) O(\mathbf{n} \mathbf{X} \mathbf{n})$ |

d. Which data structure is needed to convert infix notations to postfix notations:

| (A) | branch | <b>(B)</b>  | queue |
|-----|--------|-------------|-------|
| (C) | tree   | <b>(D</b> ) | stack |

e. Which of the following is a hash function:

| <b>(A)</b> | quadratic probing | ( <b>B</b> ) chaining |
|------------|-------------------|-----------------------|
| <b>(C)</b> | open addressing   | <b>(D)</b> folding    |

f. The prefix expression for the expression  $a^{*}(b + c)/e$ -f is :

| (A) /*a+bc-ef          | <b>(B)</b> -/*+abcef       |
|------------------------|----------------------------|
| ( <b>C</b> ) -/*a+bcef | ( <b>D</b> ) none of these |

- g. In linked list representation, a node contains at least
  - (A) node address field, data field
  - (B) node number, data field
  - (C) next address field, information field
  - (**D**) none of these
- h. Adjacency matrix for a digraph is:

| <b>(A)</b> | unimatrix         | <b>(B)</b>  | symmetric      |
|------------|-------------------|-------------|----------------|
| <b>(C)</b> | asymmetric matrix | <b>(D</b> ) | multisymmetric |

i. "n" elements of a queue are to be reversed using another queue . The number of "ADD" and "REMOVE" operations required to do so is:

| (A) 2*n        | <b>(B)</b> 4*n              |
|----------------|-----------------------------|
| ( <b>C</b> ) n | ( <b>D</b> ) no possibility |

- j. Sparse matrices have
  - (A) many zeroes entries (B) many non numeric entries
  - (C) higher dimension
- (**D**) none of these

## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

| Q.2  | a.   | <pre>Write note on the 'Time complexity' of the algorithm. Find out the time complexity of following algorithm 'sum'. algorithm sum(a, n) {     initially sum=0     for i = 0 to n     sum=sum+a[i]     return sum; }</pre> | (8) |
|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | b.   | Define Abstract Data Types. By taking any suitable example, make a list of primary operations that may be defined on ADT.                                                                                                   | (8) |
| Q.3  | a.   | What are the different ways of representing a polynomial using arrays?<br>Write an algorithm to add two polynomials using arrays.                                                                                           | (8) |
|      | b.   | What is a Linked List? How is it different from array? Write the different types of linked lists.                                                                                                                           | (8) |
| Q.4  | a.   | Implement a Singly Linked List in Stack (LIFO) manner.                                                                                                                                                                      | (8) |
|      | b.   | Write an algorithm to interchange the elements at the odd and even positions of an array with n elements.                                                                                                                   | (8) |
| DC08 | / JL | INE - 2011 2 DiplETE - CS (OLD SCHEME                                                                                                                                                                                       | E)  |

- Q.5 a. Discuss Circular linked list with the help of a suitable block diagram. (8)
  - b. Write an algorithm to convert an infix expression to a post fix expression. Execute your algorithm on the following expression: (A - B)\*(D/E). Show the position of the stack at all the intermediate stages. (8)
- Q.6 a. Write down the algorithm for Binary search. Discuss the complexity of it. (8)
  - b. Consider the list of six elements as 66,44,2,22,18,16. Apply Selection Sort algorithm to sort this list and show the result of each pass. (8)
- Q.7 a. Define Merging. Write a recursive algorithm to implement Merge sort. (8)
  - b. Define Hashing. Write Mid-Square method to implement Hashing. (8)
- Q.8 a. Explain the Linked representation of Binary Trees by taking any example. (8)
  - b. Find out the Pre-order, In-order and Post-order traversal of the following Tree: (8)



Q.9 a. For the following graph, find out the In-degree and Out-degree of all vertices. (8)



b. Write Breadth First Search Traversal algorithm for Graph. (8)