AMIETE – ET/CS/IT (NEW SCHEME) – Code: AE56/AC56/AT56

Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (

 (2×10)

a. $curl(x\hat{i} + y\hat{j} + z\hat{k})$ is equal to

(A) 0	(B) 1
(C) -1	(D) None of these

- b. Residue of $\frac{\cos z}{z}$ at z = 0 is (A) 1 (B) -1 (C) 2 (D) 0
- c. When a vibrating string has an initial velocity, its initial conditions are
 - $(\mathbf{A}) \left(\frac{\partial y}{\partial t}\right)_{t=0} = 0 \qquad \qquad (\mathbf{B}) \left(\frac{\partial y}{\partial t}\right)_{t=0} = v$ $(\mathbf{C}) \left(\frac{\partial y}{\partial t}\right)_{t=0} = \infty \qquad \qquad (\mathbf{D}) \text{ None of these}$
- d. If $\phi = 3x^2y y^3z^2$, grad ϕ at (1,-2,-1) is equal to

- e. Image of |z+1|=1 under the mapping w = 1/z is (where w = u + iv)
 - (A) 2v+1=0(B) 2v-1=0(C) 2u+1=0(D) 2u-1=0

f. The solution of the partial differential equation $\frac{\partial^2 z}{\partial y^2} = \sin(xy)$ is

(A) $z = -x^2 \sin(xy) + yf(x) + g(x)$ (B) $z = -x^2 \sin(xy) - xf(x) + g(x)$ (C) $z = -y^2 \sin(xy) + yf(x) + g(x)$ (D) $z = x^2 \sin(xy) + yf(x) + g(x)$ g. In a Poisson distribution if 2P(x = 1) = P(x=2), then the variance is

(A) 4	(B) 2
(C) 3	(D) 1

h. If variant of the random variable X is 2, then the variant of (2X+3) is

(A) 6
(C) 8 (B) -8
(D)
$$2\sqrt{2}$$

i. The value of $\Delta^n \left[e^x \right]$, where Δ is a forward operator

(A) $(e+1)^n e^x$	(B) $(e-1)^n e^x$
(C) $(e+1)^n e^{-x}$	(D) None of these

j. The value of $\int_{0}^{1} \frac{dx}{1+x^2}$ by Simpson's 1/3rd rule (taking n = 1/4) is equal to

(A) -0.7845	(B) 0.7854
(C) 0.8745	(D) 0

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Show that the function $f(z) = \overline{z}$ is continuous at the point z = 0, but not differentiable at z = 0. (8)

b. Find the image of the region
$$|z-i| < 2$$
 under the mapping $w = \frac{1+i}{z+i}$. (8)

Q.3 a. Evaluate the integral

$$\int_{C} (x+y^2-ixy)dz, \text{ where } C: z=z(t) = \begin{cases} t-2i, & 1 \le t \le 2\\ 2-i(4-t), & 2 \le t \le 3 \end{cases}$$
(8)

b. Show that the function f(z) = Ln[z/z-1] is analytic in the region |z| > 1, obtain the Laurent series expansion about z = 0 valid in the region. (8)

Q.4 a. If
$$\nabla \overline{E} = 0$$
, $\nabla \overline{H} = 0$, $\nabla \times \overline{E} = -\frac{\partial \overline{H}}{\partial t}$, $\nabla \times \overline{H} = \frac{\partial \overline{E}}{\partial t}$, show that vector E and H satisfy the wave equation $\nabla^2 u = \frac{\partial^2 u}{\partial t^2}$ (8)

b. Find the values of constants λ and μ so that the surfaces $\lambda x^2 - \mu yz = (\lambda + 2)x$, $4x^2y + z^3 = 4$ intersect orthogonally at the point (1,-1,2). (8) **Q.5** a. The cylinder $y^2 + z^2 = 9$ intersect the sphere $x^2 + y^2 + z^2 = 25$ find the surface area of the portion of the sphere cut by the cylinder above the yz plane and within the cylinder. (8)

b. Use the Divergence theorem to evaluate $\iint_{S} (\overline{v}.\overline{n}) dA, where \overline{v} = x^2 z \hat{i} + y \hat{j} - x z^2 \hat{k},$

and S is the boundary of the region bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4y. (8)

Q.6 a. Solve by method of separation of variables $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$ (8)

b. Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
 (8)

Q.7 a. The following are data from the steam table:

Temp °C (t)	140	150	160	170	180
Pressure kgf/cm ^{2} (P)	3.685	4.854	6.302	8.076	10.225

Using Newton's formula, find the pressure of steam for temperature 142^0 and 175^0 . (8)

b. A curve is drawn to pass through the following points:

[Х	1	1.5	2	2.5	3	3.5	4
	у	2	2.4	2.7	2.8	3	2.6	2.1

Estimate the area bounded by the curve, x-axis and lines x = 1, x = 4. Also find the volume of solid generated by revolving this area using Simpson's 3/8 rule. (8)

- **Q.8** a. A problem in mechanics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved? (8)
 - b. There are three bags: first containing 1 white, 2 red, 3 green balls; second 2 white, 3 red, 1 green balls and third 3 white, 1 red, 2 green balls. Two balls are drawn from a bag chosen at random. These are found to be one white & one red. Find the probability that the balls so drawn came from the second bag.
 (8)
- Q.9 a. X is a continuous random variable with probability density function given by

 $f(x) = \begin{cases} x^3, & 0 \le x \le 1 \\ (2-x)^3, & 1 \le x \le 2 \end{cases}$

find the standard deviation and also the mean deviation about the mean. (8)

b. A car hire firm has two cars which it hires out day by day. The number of demand for a car on each day is distributed as a Poisson Distribution with mean 1.5. Calculate the proportion of days on which car is not used and the proportion of days on which some demand is refused. (given that $e^{-1.5} = 0.2231$) (8)