AMIETE – ET/CS/IT (NEW SCHEME) – Code: AE53/AC53/AT53

Subject: ELECTRONIC DEVICES AND CIRCUITS

Time: 3 Hours

JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

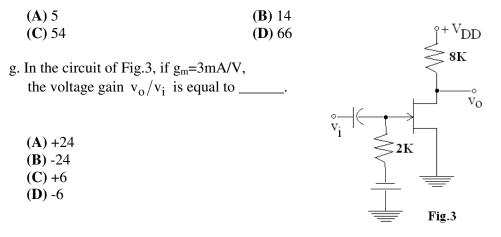
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The reverse recovery time t_{rr} in a PN junction diode is equal to_____.

(A) Storage time t _s	(B) Transition time t_t
(C) $t_s + t_t$	(D) $t_s - t_t$

b. In a full wave bridge rectifier the minimum reverse breakdown voltage that each diode should have, when the input is $V_m \sin \omega t$, is _____.


$(\mathbf{A}) 2 \mathbf{V}_{\mathbf{m}}$	(B) V _m
(C) V _m /2	$(D) 4 V_{m}$

c. In the Zener diode regulator circuit shown in Fig.1, the power dissipation in the Zener diode is_____. (A) 630mW (B) 270mW (C) 900mW (D) 1.7W 17V $^{9V} \xrightarrow{}_{-}$ $^{300\Omega}$ $^{17V} 9V \xrightarrow{}_{-}$ $^{300\Omega}$ $^{17V} 9V \xrightarrow{}_{-}$ $^{300\Omega}$

- e. An amplifier has an open loop gain of 40dB and a bandwidth of 100kHz. Bandwidth needs to be increased to 0.6MHz by providing suitable negative feedback. The amount of negative feedback should be_____.

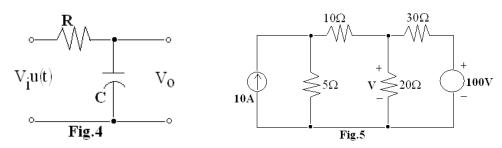
(A) 0.5%	(B) 0.05%
(C) 50%	(D) 5%

f. Three amplifiers are cascaded to provide an overall gain of 10,000. The first two stages have a gain of 40dB and 26dB respectively. The gain of the third stage is equal to _____ dB.

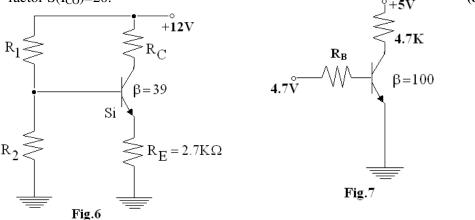
h. An amplifier has an open loop gain of 60dB and a gain stability of 20% due to temperature variations. If 1.9% negative feedback is given, the gain stability of the amplifier with feedback is equal to ______.

(A) 10%	(B)	1%
(C) 0.1%	(D)	0.01%

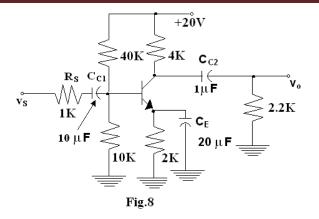
i. If the intrinsic stand-off ratio, η , of a UJT is 0.55, and its R_{B2} is equal to 20K Ω , its R_{B1} is equal to_____.


(A) 10K	(B) 24.4k
(C) 11K	(D) 36.4K

j. A thin-film capacitor has a capacitance of $0.4 \text{pF}/(\mu m)^2$. The thickness of the film is 400Å. The relative dielectric constant for SiO₂ layer is equal to_____.


(A) 3.52	(B) 4.52
(C) 5.52	(D) 8.52

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. For the RC circuit shown in Fig.4, derive the expression for the output voltage, V_0 across the capacitor C, if the input is a step of magnitude $V_1u(t)$. (8)

- b. For the circuit shown in Fig.5, find the voltage V across 20Ω resistance, using mesh analysis.
 (8)
- Q.3 a. Draw the circuit diagram of a full wave bridge rectifier and sketch the output waveform across the load resistance, when the input to the rectifier is a sinusoidal voltage, $V_m Sin \omega t$. (6)
 - b. A half wave rectifier with a capacitor filter is supplying a resistive load of 500Ω . It is supplied from 230V, 50Hz ac mains. For the ripple factor to be equal to 2%, determine the value of the filter capacitor needed. Also calculate (i) dc load voltage (ii) dc load current and (iii) peak to peak ripple voltage across the capacitor. (10)
- **Q.4** a. Draw the output and input characteristics of an NPN transistor in common emitter configuration and explain about the different regions of operation. (8)
 - b. Explain the operation of an enhancement MOSFET with suitable diagrams. (8)
- Q.5 a. In a typical voltage divider bias circuit for a transistor, derive the expression for the stability factor S(I_{CO}). (5)
 - b. Design the values of R_C , R_1 and R_2 in the amplifier circuit of Fig.6, so that the operating point is fixed at $V_{CE} = 4V$ and $I_C = 1$ mA with a bias stabilization factor $S(I_{CO})=20$.

- c. In the circuit of Fig.7, determine the maximum value of R_B so that the transistor is in saturation. (3)
- Q.6 a. Draw the circuit diagram of a single stage RC coupled amplifier and explain the purpose of each of the components used in the circuit.(8)
 - b. In the RC coupled amplifier circuit of Fig.8, determine the cut-off frequencies, $f_{LC_{c1}}$ and $f_{LC_{c2}}$ due to C_{c1} and C_{c2} respectively. (8)

- Q.7 a. Draw the transformer coupled power amplifier and calculate its maximum possible efficiency.(8)
 - b. A complementary symmetry class B output stage operated from a single supply voltage of +18V is to deliver power to a loud speaker load of 4Ω . If the input voltage is 5V rms, calculate the ac power output, dc power input, conversion efficiency and power dissipation in each of the transistors. (8)
- Q.8 a. Write six advantages of giving voltage series negative feedback to a voltage amplifier. (6)
 - b. An amplifier has a gain of 60dB, bandwidth of 300 KHz, distortion of 15%, input impedance of $20K\Omega$ and an output impedance of $1K\Omega$. If voltage series negative feedback of 3.9% is given to this amplifier, calculate the gain, bandwidth, distortion, input impedance and output impedance of the amplifier with negative feedback. (6)
 - c. In an RC phase shift oscillator using an ideal voltage amplifier, calculate the value of R, if C = 5nF and the frequency of oscillation = 5KHz. (4)
- Q.9 a. Describe the photolithographic process in semiconductor fabrication using necessary sketches.(8)
 - b. What is the length required to fabricate a $30K\Omega$ resistor whose width is $20\mu m$, given $R_s=200\Omega/square$? What is the width required to fabricate a $5K\Omega$ resistor whose length is $25\mu m$. (8)