AMIETE - ET/CS/IT (NEW SCHEME) - Code: AE51/AC51/AT51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours JUNE 2011 Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. If in a determinant the corresponding elements of two rows (or columns) are proportional to each other, then the value of the determinant is
 - (A) unity

(B) zero

(C) infinity

- (**D**) none of the above
- b. In case of matrix multiplication of two matrix A and B, if AB = 0 (where '0' stands for null matrix), it means that
 - (A) either A = 0 or B = 0
 - **(B)** both of them '0'
 - (C) does not necessary that either A = 0 or B = 0
 - (**D**) none of the above
- c. If u = F(x y, y z, z x), then

$$(\mathbf{A}) \ \frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{y}} + \frac{\partial \mathbf{u}}{\partial \mathbf{z}} = 0$$

(B)
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{v}} + \frac{\partial \mathbf{u}}{\partial \mathbf{z}} = 0$$

(C)
$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} - \frac{\partial u}{\partial z} = 0$$

(D)
$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} - \frac{\partial \mathbf{u}}{\partial \mathbf{v}} - \frac{\partial \mathbf{u}}{\partial \mathbf{z}} = 0$$

- d. The Newton-Raphson method to find a root of the equation f(x) fails when
 - (A) For a particular value of $x = x_0$ (say), $f(x_0)$ becomes zero.
 - **(B)** For a particular value of $x = x_0$ (say), $f(x_0)$ becomes unity.
 - (C) For a particular value of $x = x_0$ (say), $f'(x_0)$ becomes zero. (where f'(x) in the first derivative of f w.r.t. x)
 - **(D)** For a particular value of $x = x_0$ (say), $f(x_0)$ becomes equal to $f'(x_0)$.

e. If $\frac{\partial y}{\partial x}$ is a function of x, alone say f(x), then integrating factor is

(A) $e^{\int x dx}$

(C) $e^{\int f(x)dx}$

(B) $e^{\int y dy}$ **(D)** $e^{\int f(y) dy}$

f. The maximum value of $(3x^4 - 2x^3 - 6x^2 + 6x + 1)$ in the interval (0, 2) is

(A) 1

(B) 21

(C) $\frac{1}{2}$

(D) None of the above

g. Value of $\int_{0}^{1} dx \int_{0}^{x} e^{y/x} dy$ is

(A) $\frac{1}{2}$ (e-1)

(B) $\frac{1}{2}(1-e)$

(D) None of the above

h. The value of $J_{\frac{1}{2}}(x)$ is

(A) $\sqrt{\left(\frac{2}{\pi x}\right) \sin x}$

(B) $\sqrt{\left(\frac{2}{\pi x}\right)\cos x}$

(C) $\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$

(D) $\sqrt{\left(\frac{2}{\pi x}\right)}\cos x$

i. Value of -1/2 is

(A) $\sqrt{\pi}$

(C) $2\sqrt{\pi}$

j. A matrix 'A' is said to be idempotent matrix if

- $(\mathbf{A}) \mathbf{A}^{\mathrm{T}} \mathbf{A} = \mathbf{I}$
- **(B)** $A^2 = A$
- (C) $A^K = A$, K is any positive integer value

2

(D) $A = A^T$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. If $u = \sin^{-1} \left[\frac{x + y}{\sqrt{x} + \sqrt{y}} \right]$. Prove that $x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = -\frac{\sin u \cos 2u}{4 \cos^{3} u}$ (8)
 - b. Find the shortest distance between the line y=10-2x, and the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1.$ (8)
- Q.3 a. Using the transformation x + y = u, y = uv, show that $\iint \left[xy(1 x y) \right]^{1/2} dxdy = \frac{2\pi}{105}, \text{ integration being taken over the area of the triangle bounded by the lines } x = 0, y = 0, x+y = 1.$ (8)
 - b. A rectangular box, open at the top is to have a volume of 32 c.c. Find the dimension of the box requiring least for material for its construction. (8)
- **Q.4** a. Find the eigen values and eigen vectors of the matrix

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 (8)

b. Test the consistency of the following system of equations and solve them if possible:

$$3x + 3y + 2z = 1$$

$$x + 2y = 4$$

$$10y + 3z = -2$$
(8)

- Q.5 a. Find by the method of Regula Falsi a root of the equation $x^3 + x^2 3x 3 = 0$ lying between 1 and 2. (8)
 - b. Perform three iterations of the Gauss-Seidel method for solving the system of equations

$$\begin{bmatrix} 4 & 0 & 2 \\ 0 & 5 & 2 \\ 5 & 4 & 10 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \\ 11 \end{bmatrix}$$

Take the components of the approximate initial vector as $x_i^{(0)} = \frac{b_i}{a_{ii}}$, i = 1, 2, 3.

Compare with the exact solution
$$x = [1,-1,1]^T$$
. (8)

Q.6 a. Solve
$$(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$$
 (8)

b. Solve
$$\frac{dy}{dx} = \frac{y + x - 2}{y - x - 4}$$
 (8)

Q.7 a. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 2x^2 + 3e^{-x}$$
 (8)

- b. Find the general solution of the equation $y'' + 3y' + 2y = 2e^x$, using method of variation of parameters. (8)
- **Q.8** a. (i) If f(x)=0 $-1 < x \le 0$ = x 0 < x < 1

Show that
$$f(x) = \frac{1}{4}P_0(x) + \frac{1}{2}P_1(x) + \frac{5}{16}P_2(x) - \frac{3}{32}P_4(x) + \dots$$
 (4)

(ii) Prove that
$$\int J_3(x)dx + J_2(x) + \frac{2}{x}J_1(x) = 0$$
 (4)

b. Prove that
$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 (8)

Q.9 a. Using Beta and Gamma functions show that for any positive integer 'm'

(i)
$$\int_{0}^{\pi/2} \sin^{2m-1}(\theta) d\theta = \frac{(2m-2)(2m-4).....2}{(2m-1)(2m-3).....3}$$
 (4)

(ii)
$$\int_{0}^{\pi/2} \sin^{2m}(\theta) d\theta = \frac{(2m-1)(2m-3).....1}{(2m)(2m-2).....2} \cdot \frac{\pi}{2}$$
 (4)

b. Prove that

(i)
$$\beta \left(m, \frac{1}{2} \right) = 2^{2m-1} \beta (m, m)$$
 (4)

(ii)
$$\overline{|m|} \overline{|m+\frac{1}{2}|} = \frac{\sqrt{\pi}}{2^{2m-1}} \overline{|2m|}$$
 (4)