Code: AE20 Time: 3 Hours

Subject: MICROWAVE THEORY & TECHNIQUES

Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. The semiconductor diode which can be used in switching circuits at microwave range is

(A) PIN diode	(B) Varactor diode
(C) Tunnel diode	(D) Gunn diode

b. Which one of the following modes of transmission will not be supported by a rectangular waveguide?

(A) TE ₁₀	(B) TE ₁₁
(C) TM_{11}	(D) TM_{10}

c. The skin depth at 1000 MHz, in comparison with that at 500 MHz is

(A) 2	(B)	$\sqrt{2}$
(C) $1/\sqrt{2}$	(D)	1/2

- d. In a TWT, the tube velocity of the axial component of the RF field on the slow-wave structure is kept
 - (A) Equal to the velocity of the electrons.

(C) Pump energy

- (B) Slightly less than the velocity of electrons.
- (C) Slightly more than the velocity of electrons.
- (D) Equal to the velocity of light in free space.
- e. In parametric amplifiers used in microwave communication systems, the amplification is limited by

(A)	Type of biasing	(B) A	A maximum	limit of 10
------------	-----------------	--------------	-----------	-------------

(D) Frequency of operation

1

AMIETE - ET (OLD SCHEME)

f. Which of the following is the correct angular aperture for a paraboloidal reflector antenna for which the aperture number is 0.25?

(A) 45°	(B) 90°
(C) 120°	(D) 180°

- g. A disadvantage of microstrips with respect to stripline circuits is that the former
 - (A) Do not lend themselves to printed circuits techniques
 - (**B**) Are more likely to radiate
 - (C) Are bulkier
 - (D) Are more expensive and complex to manufacture
- h. Which one of the following is a transferred electron device?

(A) BARITT diode	(B) IMPATT diode
(C) Gunn diode	(D) Step recovery diode

i. A 75 ohm transmission line is first short terminated and minima locations are noted. When the short is replaced by a resistive load R_L , the minima locations are not altered and the VSWR is measured to be 3. What is the value of R_L ?

(A) 25 ohms	(B)	50 ohms
(C) 225 ohms	(D)	250 ohms

- j. In microwave power measurement using bolometers the principle of working is the variation of
 - (A) Inductance with absorption of power
 - (**B**) Resistance with absorption of power
 - (C) Capacitance with absorption of power
 - (D) Cavity dimensions with heat generated by the power

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

the outer conductor is 6 mm 1.60. Calculate the character	n and the dielectric constant of the insuristic impedance. If the nominal capac	lation is
matrix for the same. (i) Directivity	(ii) Coupling factor (iv) Isolation.	write S
	 the outer conductor is 6 mn 1.60. Calculate the character 60 pF/m. Find the value of Define the following terms matrix for the same. 	(i) Directivity (ii) Coupling factor

2

	a 10 GHz carrier from a coaxial	TE_{10} modes. This waveguide is fed by cable. If TE_{10} wave is propagated, n (ii) guide wavelength (iii) phase and	(8)
Q.4	a. Explain the operation of a Faraday sketch. List the applications of Ferrit	-	(8)
	b. Derive an expression for resonant resonator.		(8)
Q.5	spacing in either cavity $d=1$ mm, sp cm, effective shunt impedance $R_{sh}=4$	I ₀ =30 mA, Frequency F=8 GHz, gap acing between centres of cavities L= 4 $40 \text{ k}\Omega$. Determine: me of electrons. (iii) input voltage for	(8)
	b. Explain how amplification is achieve	ed in a magnetron with neat sketch. (8	6)
Q.6	a. Obtain the scattering matrix of H pla	nne Tee. (8	(8)
	b. Differentiate amongst TE, TM, TEM	1 & HE waves. (4	(4)
	c. Enumerate the advantages and disad	vantages of MICS. (4	(4)
Q.7	a. Describe the method for micro measurement.	- ·	(8)
	b. Explain working of TWT with neat s	sketch. (i	(8)
Q.8	a. Explain in detail the operation of Gu	nn diode with neat sketch. (8	(8)
	b. Derive the radar range equation. maximum range of RADAR.	*	(8)
Q.9	Write short notes on any TWO of th	e following:	
	 (i) Measurement of high VSWR (ii) Microwave antennas (iii) Reflex Klystron (iv) Impedance matching in RF Transition 	ansmission line. (2×8	8)