AMIETE - ET (OLD SCHEME)

Subject: ANALOG & DIGITAL ELECTRONICS Code: AE09 **Time: 3 Hours** Max. Marks: 100

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.

Q.1		Choose the correct or the best alternative in the following: If an inverting amplifier has the non inverting pin of the op-amp connected to ground, the inverting pin of the op-amp will be					
	a.						
		(A) at ground(C) equal to V_{in}	(B) at virtual ground(D) equal to V_{out}				
	b.	. Slew rate distortion is more prevalent in circuit with					
		(A) small input voltage swings(C) small output voltage swings	(B) large input voltage swings(D) large output voltage swings				
	c.	c. The cut off frequency is also referred to as the					
		(A) half power point(C) higher end frequency	(B) low end frequency(D) both (B) and (C)				
	d.	. The network of resistors containing only two values are known as					
		(A) binary divider(C) analog divider	(B) binary ladder(D) analog ladder				
	e.	e. When a transistor switch is in saturation V _{CE} is approximately equal to					
		(A) V _{CC} (C) 0.2V	(B) V _B (D) 0.8V				
	f.	Which of the following flipflop is used as latch?					
		(A) JK flipflop(C) D flipflop	(B) SR flipflop(D) T flipflop				

 (A) increase the noise margin of the gate (B) decrease the output switching delay (C) facilitate a wired OR logic connection (D) increase the output impedance of the circuit 						
	h.	A full adder can be made of				
		(A) two half adder(C) two half adder and OR gate		half adder and a NOR gate half adder and AND gate		
	i.	A ring counter consisting of 5 flipflop will have				
		(A) 5 states (C) 32 states	(B) 10 s (D) ∞ s			
	j.	LEDs function like normal diodes except they have a forward voltage drop of approximately				
		(A) 0.3 V (C) 1V	(B) 0.7 (D) 2V			
		Answer any FIVE Question Each question ca				
Q.2	a.	Find the Butterworth transfer function that meets the following low pass filter specification $f_p = 10 \text{KHz}$, $A_{max} = 1 \text{dB}$, dc gain = 1, $A_{min} = 25 \text{dB}$. (8)				
	b.	. Explain "offset voltage" and "offset current" of an opamp also discuss t technique for minimizing the same.				
Q.3	pacitor filter and also explain ance.	(6)				
	b.	Draw the block diagram for a cooperation for the system.	ounting type	-	.0)	
Q.4 a.		Explain the physical significance of storage time and transition time in diode switching. (8)				
	b.	Explain the terms (i) Noise margin (iii) Power dissipation		opagation delay n in and fan out	(8)	
Q.5	a.	Draw a totem pole output with a	TTL gate &	explain its operation. (1	.0)	
b. Generate the following combination logic equation using a multiplexer $Y = C \overline{B} \overline{A} + \overline{C} \overline{B} \overline{A} + C \overline{B} A + \overline{C} B A$						
AE09	/ Jl	JNE - 2011	2	AMIETE - ET (OLD SCHEMI	Ξ)	

g. TTL totempole output stage is primarily used to

- Q.6 a. Explain the system for a 4 bit odd parity checker. (8)
 - b. Show how a SR flipflop can be constructed using NOR gates and explain the different states of the SR flipflop. (8)
- Q.7 a. Explain the block diagram of a ROM and what hardware constitutes the memory element. (8)
 - b. Draw the circuit diagram of a simple instrumentation amplifier. Also derive the expression of output voltage in terms of the input value and circuit resistance. (8)
- Q.8 a. Sketch the architecture of an NMOS op-amp and list three reasons why this architecture is employed. (8)
 - b. Explain how a PLA can be used to realize a logical expression. (8)
- Q.9 Write short note on any \underline{TWO} of the following: (8×2)
 - (i) BJT inverter
 - (ii) Dynamic MOS
 - (iii) Shift register
 - (iv) Programmable Array logic