AMIETE – CS/IT (NEW SCHEME) – Code: AC76/AT76

Subject: CRYPTOGRAPHY & NETWORK SECURITY

Time: 3 Hours

JUNE 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. _____ is designed to protect data from modification, insertion, deletion and replaying by an adversary.

(A) Confidentiality	(B) Authentication
(C) Data integrity	(D) Access control

b. The language that we commonly use can be termed as

(A) Pure text	(B) Simple text
(C) Normal text	(D) Plain text

c. What will be the value of 27 mod 5?

(A) 2	(B) 0
(C) 1	(D) 3

d. At the encryption site, DES takes a 64-bit plaintext and creates _____bit cipher text

(A) 56	(B) 64
(C) 48	(D) 128

e. _____can issue digital certificates

(A) Government	(B) Bank
(C) CA	(D) Shopkeeper

f. _____is the most common authentication mechanism.

(A) Smart card	(B) Password
(C) PIN	(D) Biometrics

g.	g. The final solution to the problem of key exchange is the use of		
	(A) passport(C) digital certificate	(B) digital envelope(D) message digest	
h.	In asymmetric key cryptograph communicating party.	y, keys are required per	
	(A) 2	(B) 3	
	(C) 4	(D) 5	
i.	The message digest algorithm(s)		
	(A) MD5	(B) SHA-1	
	(C) Both (A) and (B)	(D) None of the above	
j.	increases the redundanc	ey of plain text.	
	(A) Confusion	(B) Diffusion	
	(C) Both (A) and (B)	(D) Neither (A) nor (B)	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What do you understand by security services? List and define five se services.	curity (8)
	b.	Define Chinese Remainder Theorem and its application? Using Ch Remainder Theorem solve: $x== 2 \mod 3$, $x== 3 \mod 5$, $x== 4 \mod 11$, $x==5 \mod 16$.	11111111111111111111111111111111111111
Q.3	a.	Distinguish between monoalphabetic and polyalphabetic cipher. Are all stre ciphers monoalphabetic? Explain.	eam (10)
	b.	A message has 2000 characters. If it is supposed to be encrypted using a cipher of 64 bits, find the size of the padding and number of blocks.	block (6)
Q.4	a.	What is double DES? What is kind of attack on double DES makes it usele	ss? (8)
	b.	Why does the round key generator need a parity drop permutation?	(4)
	c.	Describe the three attempted attacks on DES.	(4)
Q.5	a.	Define CFB and list its advantages and disadvantages.	(8)

2

	b.	Write the Encryption algorithm pseudocode for CFB mode.	(8)
Q.6	a.	Define MDC and MAC. Also distinguish between MDC and MAC.	(8)
	b.	Compare the compression function of SHA-512 without the last operat final adding with a Feistel cipher of 80 rounds. Show the similaritie differences.	ion of es and (8)
Q.7	a.	Compare and contrast attacks on digital signatures with attacks on cryptosystems.	(5)
	b.	What is KDC? List the duties of a KDC.	(6)
	c.	There are two nonces (R_A, R_B) in Needham- Schroeder protocol, and only nonces (R_A, R_B, R) in the Otway-Ress protocol. Explain why there is ne extra nonce, R, in the second protocol?	three ed for (5)
Q.8	a.	Write short notes on the following: $(5 \times 2 =$ (i) PGP(ii) S/MIME	10)
	b.	Compare and contrast key management in PGP and S/MIME.	(6)
Q.9	a.	Define and explain SSL. Also state the purpose of four protocols define SSL.	ned in (10)

b. Show how SSL or TLS reacts to brute-force attack can an intruder use an exhaustive computer search to find encryption key in SSL or TLS? Which protocol is more secure in this respect SSL or TLS? (6)

3