AMIETE – CS/IT (NEW SCHEME) – Code: AC64/AT64

Subject: DESIGN & ANALYSIS OF ALGORITHMS

Time: 3 Hours

Max. Marks: 100

 (2×10)

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Which of the following is not $O(n^2)$

(A) n+1000n	(B) n ^{1.9999}
(C) $10^5 + 2^6$ n	(D) n^3/\sqrt{n}

b. The total number of comparisons in bubble sort is

(A) $O(n \log n)$	$(\mathbf{B}) O(n)$
(C) $O(n^2)$	(D) None of the above

- c. We employ dynamic programming approach when
 - (A) It gives optimal solution
 (B) The solution has optimal substructure
 (C) It is faster than Greedy technique
 (D) None of the above
- d. Find the correct answer for the increasing order of complexity

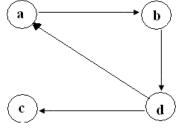
(A) n^2 , $n \log n$, n	(B) n, n log n, n ²
(C) $n \log n, n^2, n$	(D) n^2 , n, n log n

e. A spanning tree contains

(A) all the edges of the graph	(B) all the vertices of the graph
(C) both (A) & (B)	(D) None of the above.

f. A problem is said to be NP-comple	te	
 (A) If it is as hard as any problem in NP (B) A non-polynomial time algorithm has been discovered (C) A polynomial time algorithm can exist but needs a parallel computer (D) There is Greedy solution to the problem 		
g. Which of the following basic algorithms can be used to most efficiently determine the presence of a cycle in a graph?		
(A) Minimum cost spanning tree(C) Breadth first search	(B) Ford Fulkerson algorithm(D) Depth first search	
h. n-Queens problem is solved by		
(A) Greedy approach(C) Backtracking	(B) Dynamic programming(D) Branch-and-bound	
i. The average case complexity for quick sort is		
(A) $O(n)$ (C) $O(n \log n)$	(B) $O(n^2)$ (D) $O(\log n)$	
j. In AVL trees, if there are n nodes t	he depth of the tree is	
(A) O(n)	$(\mathbf{B}) \operatorname{O}(n \log n)$	

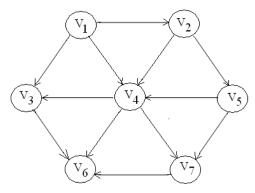
Answer any FIVE Questions out of EIGHT Questions.


Q.2 a. Write a Euclid's algorithm to determine the GCD of two non-negative numbers? (8)

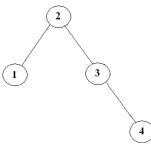
Each question carries 16 marks.

b. Draw the sequence of steps for designing and analyzing an algorithm. (4)

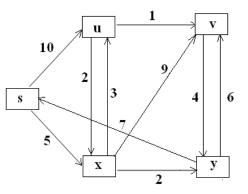
(**D**) None of the above


c. In the following directed graph, draw its Adjacency matrix and Adjacency list of the graph. (4)

Q.3 a. Write a pseudocode of recursive and non-recursive algorithm for Fibonacci series. (8)


(**C**) O(log n)

- b. Solve the following recurrence relation:
 - (i) T(n) = 9T(n/3) + n
 - (ii) T(n) = T(2n/3) + 1 (4×2 = 8)
- Q.4 a. There are two sorted arrays of size m and n. Write an efficient algorithm to merge two array into another array of size m+n. The resultant array should be sorted. Discuss the time complexity of the algorithm. (8)
 - b. Explain the sequential search in detail with example. (8)
- Q.5 a. What are the main facts about Depth First Search (DFS) and Breadth First Search (BFS)? (6)
 - b. Write a pseudocode for topological sort? If there are V vertices in a graph, what is a running time of the algorithm? (10)


Find the result in the above directed graph by applying topological sort.

- Q.6 a. (i) Explain single R rotation, single L rotation, double LR rotation, double RL rotation in AVL trees with an example. (4)
 - (ii) Draw the diagram of the insertion of 5 and 6 given below AVL tree. (4)

- b. Explain the algorithm of Gaussian elimination for solving system of linear equations. (8)
- Q.7 a. Consider the following graph G = (V, E). All nodes have infinite cost except the source node s, which has 0 cost? Using the Dijkstra's Algorithm find out the single-source shortest path. (8)

AC64/AT64 / JUNE - 2011

b. Solve the knapsack problem, using bottom-up dynamic programming algorithm with the capacity w = 10. Compute the optimal solution. (8)

Item	1	2	3	4
Value	10	40	30	50
Weight	5	4	6	3

Q.8 a. What is hashing? What are the various methods of handling the collision? (8)

b. Using the decision trees, design the sorting algorithm. (8)

- Q.9 a. Explain the backtracking and branch-bound in detail. (8)
 - b. Write short notes on any <u>**TWO**</u> of the following:-
 - (i) Bisection method
 - (ii) Method of false position
 - (iii) Newton's method

(8)

4