AMIETE - CS (OLD SCHEME)

Code: AC10 Time: 3 Hours

JUNE 2011

Subject: DISCRETE STRUCTURES

Max. Marks: 100

10)

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alternative in the following:	(2×
-----	--	-----

- a. Let $S = \{a, b, \phi\}$ then number of elements in power set P(P(S)) is
 - (A) 8

(B) 16

(C) 256

- **(D)** 512
- b. Number of reflexive relations that can be defined on a set A with 4 elements is
 - (A) 1024

(B) 4096

(C) 16

- **(D)** 2048
- c. How many nodes of degree two you can find in a complete binary tree T having 20 leaf nodes?
 - (A) 8

(B) 18

(C) 19

- **(D)** 20
- d. Which of the following production rule generates a language in {0, 1} that terminates in substring "01".
 - (A) $P = \{S \rightarrow 0S, S \rightarrow 1S, S \rightarrow 01\}$

(B) $P = \{S \rightarrow 01S, S \rightarrow 10S, S \rightarrow 1\}$

(C) $P = \{S \rightarrow 0A, A \rightarrow 1S, S \rightarrow 01\}$

- **(D)** $P = \{S \rightarrow 00S, S \rightarrow 11S, S \rightarrow 01\}$
- e. In how many ways can a party of 7 persons arrange themselves around a circular table?
 - **(A)** 7!

(B) 8!

(C) 6!

- **(D)** 7
- f. A bounded Poset has
 - (A) Only least element
- **(B)** Only greatest element
- (C) Both least and greatest element (D) Only minimal element

g.	The proposition $(p \ v \ (p \rightarrow q))$ is equivalent to which of the following?		
	$ \begin{array}{c} \textbf{(A)} \neg p \ v \ (p \rightarrow q)) \\ \textbf{(C)} \ F \end{array} $	(B) q (D) T	
h.	Converse of the statement 'I stay only if you go' is		
	(A) I shall not stay if you don't go.(C) I shall not stay if you go.	(B) I stay if you don't go.(D) If you go then I shall not stay.	
i.	A regular language is produced by		
	(A) Type I grammar(C) Type III grammar	(B) Type II grammar(D) Type 0 grammar	
j.	Two matrices A and B of order m x n and p x q respectively, are said to be conformal for multiplication if		
	(A) m is equal to p(C) n is equal to q	(B) n is equal to p(D) m is equal to q	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.			
a.	Let A = {a, b, c, d, e} and R = {(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)} then compute (i) R^2 and (ii) R^∞ (8)		
b.	Prove that the relation "congruence modulo 3 " is an equivalence relation in the set of integers. (8)		
a.	Show that $n^3 + 2n$ is divisible by 3. (8)		
b.	Prove that the sum of two rational numbers is a rational number. Using the proof show that the sum of a rational number and an irrational number is an irrational number. (8)		
a.	Let L be a distributive Lattice. For	any a, b, $c \in L$, show that if $a \land b = a \land c$	

- **Q.4** and $a \lor b = a \lor c$ then b = c**(8)**
 - b. Simplify the Boolean function: $F(x, y, z) = \sum (0, 1, 2, 3, 4, 6)$ **(8)**
- a. Without using truth table, prove De Morgan's law of addition and Q.5 multiplication of Boolean variables x and y i.e.

(i)
$$(x + y)' = x' \cdot y'$$

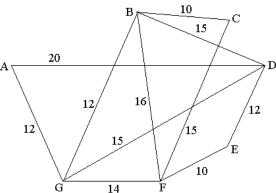
(ii) $(x \cdot y)' = x' + y'$ (8)

b. Prove that
$$p \rightarrow q \equiv \neg p \lor q$$
 (8)

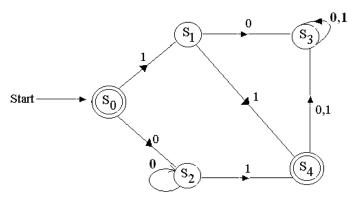
Q.2

Q.3

Q.6 a. Find minimum spanning tree using Krushkal's algorithm of the following graph. (10)



- b. Define the following terms: Quotient graph, Bipartite graph, Regular graph. (6)
- Q.7 a. State and prove Pigeonhole principle. (8)
 - b. In a class there are 35 girls and 25 boys. 5 students are selected at random from the class. What is the probability that out of five at least two are girl? (8)
- Q.8 a. State and prove pumping lemma for regular language. (8)
 - b. Simplify the following FSM. (8)



- **Q.9** Write a short note on the following:
 - (i) Transitive Closure
 - (ii) Principle of Mathematical Induction
 - (iii) Isomorphic graph
 - (iv) Types of Grammar

 (4×4)