ROLL NO. ___

Code: AE75 Subject: OPTOELECTRONICS AND COMMUNICATION

AMIETE – ET (Current Scheme)

Time:	3 Hours	Decen	nber - 2017	Max. Marks: 100	
PLEAS IMME NOTE • Que the • The the	SE WRITE YOUR RO DIATELY AFTER RE There are 9 Question estion 1 is compulsory space provided for it is answer sheet for the commencement of the t of the remaining EIG	LL NO. AT TH CEIVING THE s in all. and carries 20 n the answer bo Q.1 will be colle examination. HT Questions a	<i>IE SPACE PROVIDED</i> <i>QUESTION PAPER</i> . marks. Answer to Q.1 pok supplied and nowher ected by the invigilator	ON EACH PAGE must be written in re else. after 45 minutes of	
car • Any	rries 16 marks. y required data not exp	licitly given, ma	ay be suitably assumed a	and stated.	
Q.1	Choose the correct of	the best altern	ative in the following:	(2×10)	
	 a. Laser is based on the (A) Spontaneous en (C) Radiated emission 	e principle of nission ion	(B) Stimulated emission(D) All of these	1	
	 b. To transform optical power into electrical power which physical effect is utilized in photon-detector? (A) pyroelectric (B) bolometric (C) Photo-emissive (D) Both (A) and (B) 				
	 c. A 1×10 coupler has output port? (A) 0 dBm (C) -3 dBm 	an input signal (0 dBm. What is the power (B) -10 dBm (D) -1 dBm	r level at each	
	 d. If the core/cladding fiber type would be (A) Multimode grad (C) Multimode step 	dimensions of a led index index	n optical fiber are given b (B) Single mode graded (D) Single mode step in	by 50/125 μm, the index dex	
	e. A 25 km long multimode step index fiber with $n_1 = 1.46$ is operated at $\lambda = 1.3 \mu m$. What is the permissible maximum bit rate? (A) 5.1×10^{-6} (B) 5.1×10^{6} MB/s (C) 1 (D) None of these				
	 f. The cladding which surrounds the fiber core (A) is used to reduce optical interference (B) is used to protect the fiber (C) ensure that the refractive index remains constant (D) acts to guide the light in the core 				
	 g. A light ray is incide (A) 14.18° (C) 41.81° 	nt from glass to	air. If n ₁ =1.5 and n ₂ =1, th (B) 81.41° (D) 18.14°	he critical angle is	
	h. CDMA is (A) Carries division (C) Code diversion	n multiple access multiple access	(B) Code division multi (D) Coding multiple acc	ple access cess	

ROLL NO. ____

- i. WDM can be implemented by (A) Mach-Zehnder interferometer (C) Arrayed waveguide grating
- j. White noise consist of (A) flat spectrum (C) no spectrum

(B) Fiber Bragg grating (**D**) All of these

(B) series spectrum (**D**) None of these

	Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.	
Q.2	a. Explain the structure of a fiber. Why is refractive index of cladding is sl less than that of core? What is graded index fiber?	ightly (8)
	b. Calculate the cut off wavelength and the number of modes supported by a with core Refractive Index 1.54 and cladding refractive index 1.5. Core radius of 25µm and operates at 1300nm.	a fiber has a (8)
Q.3	a. Briefly explain the reasons for pulse broadening due to material dispers optical fiber.	ion in (8)
	b. Describe the effect of mode coupling on pulse distortion.	(8)
Q.4	a. Derive the expression for quantum efficiency and power in a light en diode.	nitting (8)
	b. A P-N Photodiode has a quantum efficiency of 50% at a wavelength of 0. Calculate: (i) its responsivity at 0.9μm	9 μm.
	(ii) the received optical power if mean photocurrent is 10^{-6} amp (iii) the corresponding number of received photons at this length	(8)
Q.5	a. List a few principal requirements of a good connector design. What a different connector types?	re the (8)
	b. A single mode fiber has a normalized frequency V = 2.40, a core refra index n ₁ = 1.47, a cladding refractive index n ₂ = 1.465 and a core diameter 9 μm. Let us find the insertion losses of a fiber joint having a lateral offset μm.	t of 1 (8)
Q.6	a. What are the important requirements of an optical receiver? Explain the impedance amplifier stage in optical receiver.	Trans (8)
	b. Draw and explain the circuit of High Impedance pre-amplifier using FET.	(8)
Q.7	a. With neat schematic, explain basic concept of subcarrier multiplexing.	(8)
	b. Derive the carrier to noise ratio.	(8)
Q.8	a. Explain link design equations in point to point communication link bas power budget and rise time budget consideration.	ed on (8)
	b. Why is line coding an important consideration within digital optical system design?	fiber (8)
Q.9	a. Explain Semiconductor optical Amplifier with a neat diagram and comp with EDFA.	pare it (8)
	b. Describe (i) SONET/SDH Networks (ii) Frame format of SONET/SDH	(8)