Code: AE73/AE125

Subject: INFORMATION THEORY & CODING

ROLL NO.

AMIETE – ET (Current & New Scheme)

Time: 3 Hours

December - 2017

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. The mutual information of the channel in terms of the entropy of the channel output as
 (A) I(x;y)=H(y)-H(x/y)
 (B) I(x;y)=H(x)+H(x/y)
 - (C) I(x;y)=H(x)-H(x/y) (D) I(x;y)=H(y)+H(x/y)

b. Random attenuation changes within the transmission medium is

(A) Noise	(B) Probability Error
(C) Fades	(D) None of these

c. The Hamming distance between two binary codes 11011101 and 10011010 is

(A) 5	(B) 7
(C) 8	(D) 4

d. The probability of an event such as $P(B_j/A_i)$ that is the intersection of events from sub experiments is called the

(A) Conditional Probability	(B) Joint Probability
(C) Marginal Probability	(D) None of these

e. A generator polynomial g(X) of an (n,k) cyclic code is a factor of

(A)	X^{n+1}	(B)	X^{n} +1
(C)	X^{n-k-1}	(D)	$X^n - 1$

f. The law of probability says that $P(A \cup B) =$

(A) $P(A) + P(B) + P(AB)$	(B) $P(A) \ge 1 \& P(B) \ge 1$
(C) $1 - P(AB)$	(D) $P(A) + P(B) - P(AB)$

Code: AE73/AE125

Subject: INFORMATION THEORY & CODING

g. Number of check bits in a (n, k) block code are

(A) $q = n - k$	(B) $q = n + k$
(C) $q = n/k$	(D) q = k/n

h. The entropy of a source that emits three symbols with probabilities $\frac{1}{2}, \frac{1}{4}$,

and $\frac{1}{4}$ is (B) 1.0 bit/ symbol (A) 0.5 bits/symbol (C) 1.5 bits/symbol (D) 2.0 bits/symbol i. One Hartley is _____ bits **(A)** 1.443 **(B)** 2.56 (C) 4.23 **(D)** 3.32 j A source S = {S₁, S₂, S₃} emits symbols with P = $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}$. The total information of all the messages is (B) 3 bits (A) 2 bits (D) 5 bits (C) 4 bits

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. State Shannon Hartley law. What are it's implications. (8)
 - b. The Input to a binary communication channel denoted by a random variable X, takes on one of two values'0'or '1'with probability $\frac{3}{4}$ and $\frac{1}{4}$ respectively. Due to errors caused by noise in the system, the output Y differs from input X occasionally. The behaviour of communication channel is modelled by conditional probabilities (p(y=1 / x=1) = 3/4 and p (y=0 / x=0) = 7/8 (8) Find p(y=1), p (y=0) and p(x=1/y=1)
- Q.3 a. Let X and Y be defined by
 - $X = \cos \theta$ and $Y = \sin \theta$

Where θ is a random variable uniformly distributed over $[0,2\pi]$.

2

- (i) Show that X and Y are uncorrelated
- (ii) Show that X and Y are not independent
- b. Define probability density fundtion and distribution function and explain their properties briefly. (8)

(8)

ROLL NO.

Code:	A	E73/AE125 Subject: INFORMATION THEORY & CODI	NG
Q.4	a.	A source emits one of four possible messages m_1 , m_2 , m_3 and m_4 with probabilities $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$ and $\frac{1}{8}$, respectively. Calculate the information content of each message and the average information content per message.	(8)
	b.	Explain Markoff statistical model for information sources.	(8)
Q.5	a.	Define the term entropy. Compute the formula of entropy with its properties.	(8)
	b.	What do you understand by source Encoding? State source coding theorem and find the relation between efficiency, entropy and average codeword length.	(8)
Q.6	a.	Show that (i) $H(X Y) = H(X)$ when X and Y are statistically independent, and (ii) $H(X Y) = 0$ when $X = Y$.	(8)
	b.	Explain the importance of a channel in a communication system with a comparison between continous & discrete channels.	(8)
Q.7	a.	Explain the following terms: (i) Mutual information (ii) Channel capacity	(8)
	b.	Consider a binary symmetric channel (BSC) characterized by the transition probability 'p'. Plot the mutual information of the channel as a function of p_1 , the a priori probability of symbol 1 at the channel input, for the transition probability $p = 0, 0.1, 0.2, 0.3, 0.5$.	(8)
Q.8	a.	Show that a linear block code with a minimum distance d_{min} can correct upto $[(d_{min} - 1) / 2]$ errors and detect upto $d_{min}-1$ errors in each codeword, where $[(d_{min} - 1) / 2]$ denotes the largest integer no greater than $(d_{min} - 1)/2$.	(8)
	b.	Consider a (7, 4) Linear code whose generator matrix is $G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ (i) Find all code vectors of this code	
		(ii) Find the parity check matrix for this code(iii) Find d_{min}.	(8)
Q.9	a.	Factorize the polynomial $x^3 + x^2 + x + 1$ on GF(2).	(4)
	b.	Consider the (3, 1, 2) convolution code with $g^{(1)} = (110)$, $g^{(2)} = (101)$ & $g^{(3)} = (111)$. (i) Draw the encoder circuit (ii) Find the codeword corresponding to the information sequence (11101).	(8)
	c.	Explain Burst & random error correcting codes.	(4)
AE73//	١Ē	125/Dec-2017 3 AMIETE - ET (Current & New Scheme	e)