Code: AE58/AE106

Subject: MATERIALS & PROCESSES

ROLL NO.

AMIETE – ET (Current & New Scheme)

December - 2017

Time: 3 Hours Max. Marks: 100 PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE OUESTION PAPER. NOTE: There are 9 Ouestions in all. • Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else. • The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination. • Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks. • Any required data not explicitly given, may be suitably assumed and stated. 0.1 Choose the correct or the best alternative in the following: (2×10) a. A Cation vacancy and an Anion vacancy in a crystal of the type AB is called **(B)** Frenkel defect (A) Schottky defect (C) pair of vacancies (**D**) none of these b. The majority charge carriers in p-type Ge are (A) free Electrons **(B)** ions (C) holes (**D**) conduction electrons c. Hydrogen bonds are stronger than (A) Van der waals bonds (**B**) ionic bonds (C) metallic bonds (D) Covalent bonds d. The grown single crystal generally contains (A) tilt boundaries (B) dislocation loop due to vacancy condensation (C) twin boundaries (**D**) grain boundaries e. If the first reflection from a FCC crystal has a Bragg angle θ of 21.5°, the second reflection will have an angle θ of **(B)** 25° (A) 18.5° (**C**) 31.2° **(D)** 36.8° f. The following can be grown epitaxially on Si without creating significant distortion (A) Si of a different doping **(B)** Sio₂ (C) GaAs (**D**) None of these g. The Fermi level is (A) an average value of all available energy levels (B) the highest occupied energy level at 0 K (C) an energy level at the top of the valence band (**D**) the largest available energy level. h. If P is the number of phases, F is the degree of freedom, and C is the number of components in a system, then according to phase rule

componentes in a system,	then according to phase rate
(A) $P + F = C - 2$	(B) $P + C = F - 2$
(C) $P + F = C + 2$	(D) $P + C = F + 2$

ROLL NO. _____ Subject: MATERIALS & PROCESSES

	i.	 Ionic polarization (A) decreases with temperature (B) increases with temperature (C) may increase or decrease with temperature (D) is independent of temperature 	
	j.	The transition from the ferromagnetic to the paramagnetic state is named after(A) Curie-Weiss(B) Curie(C) Neel(D) Debye	
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.			
Q.2	a.	Obtain the miller indices of a plane which intercepts at a, b/2, 3c in a cubic unit cell. Draw a neat diagram showing the plane, where a, b, c are lattice parameters. (8)	5)
	b.	Explain the Powder Method and also give its advantages. (8	6)
Q.3	a.	Explain point imperfection in elemental crystals. (8	5)
	b.	Explain the structure of silica and silicates. What is surface imperfection? (8)	i)
Q.4	a.	What is current density in metals? How it depends on mobility of electrons? Calculate mobility of electrons in copper. (8)	i)
	b.	Explain the following: (i) Pipe diffusion(4x2)(ii) Lattice diffusion(iii) Lattice diffusion)
Q.5	a.	Derive expression for dielectric constant of monoatomic gasses. (8	5)
	b.	What is piezoelectricity? What are different applications in which piezoelectricity isused. Describe materials that show piezoelectricity.(2+3+3)	
Q.6	a.	In a 440 V, 50 Hz transformer, the total iron loss is 2300 W. When the applied voltage is 220 V at 25 Hz, the total iron losses are 750W. Calculate the eddy current loss at the normal voltage & frequency. (4)	I)
	b.	Explain the term anti-ferromagnetism. (4)
	c.	Explain the significance of hysteresis. Sketch a neat representation of hysteresis loop for a – (i) Transformer core (ii) Strong electromagnet (iii) Magnetic tape (8)	8)
Q.7	a.	What do understand by conductors, semi-conductors and insulators? Classify different types of semi-conductors	") K)
	b.	The resistivity of pure silicon at room temperature is 3000 ohm-m. Calculate the intrinsic carrier density. (4	9 1)
	c.	Derive an expression for Hall Voltage. (4	b
Q.8	a.	Write short notes on, (i) Varactor diode (ii) Ferreed Relay (4x2	:)
	b.	Write applications of the following:- (i) Carbon resistor (ii) Air cored inductor(ii) Paper capacitor (iv) Thermal Relay(2×4)	Ð
Q.9	a.	What is JFET? Explain the drain and transfer characteristics of JFET. (8)	5)
	b.	Write short notes on, (i) Grown junction (ii) Zone refining. (4×2	2)