ROLL NO.

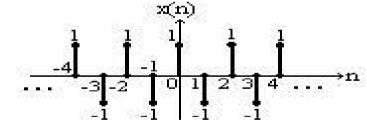
Code: AE57/AC57/AT57/AE112

Subject: SIGNALS AND SYSTEMS

AMIETE – ET (Current & New Scheme)

December - 2017 (Special)

Max. Marks: 100


PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

#### **Q.1** Choose the correct or the best alternative in the following: $(2 \times 10)$

- a. The process of converting from continuous time domain to discrete time domain is called
  - (A) sampling (B) quantization
  - (C) fourier analysis (D) None of these
- b. Which system is non-causal system
  - (A) y(n) = x(n 1)(B) y(n) = 2x(n)(C) y(n) = x(n) + A(D) y(n) = x(2n)
- c A band pass signal extends from 1 KHz to 4 KHz. The minimum sampling frequency needed to retain all information in the sampled signal is
   (A) 1 KHz
   (B) 6 KHz
   (C) 3 KHz
   (D) 4 KHz
- d. The discrete-time signal x(n) shown in Fig.1 is periodic with fundamental period





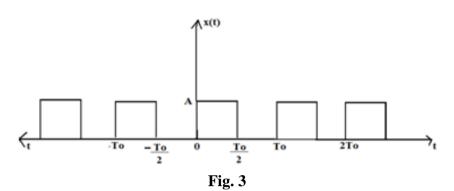
| ( <b>A</b> ) 6 | <b>(B)</b> 4  |
|----------------|---------------|
| ( <b>C</b> ) 2 | <b>(D</b> ) 0 |

e. The transform of discrete time signal x(-n) will be (A) X(e<sup>-j $\omega$ </sup>) (B) X(e<sup>j $\omega$ </sup>) (C) X(e<sup>-2j $\omega$ </sup>) (D) X(e<sup>-3j $\omega$ </sup>)

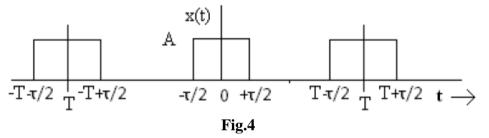
ROLL NO. \_\_\_\_\_

# Code: AE57/AC57/AT57/AE112 Subject: S

## Subject: SIGNALS AND SYSTEMS


|                                                                        | f. For a signal which is bandlimited to a frequency of 500 Hz, the                                      |                                                                                             |                                                                                    |     |  |
|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|--|
|                                                                        |                                                                                                         | Nyquist Rate will be<br>(A) 100 Hz                                                          | <b>(B)</b> 1000 Hz                                                                 |     |  |
|                                                                        |                                                                                                         | ( <b>C</b> ) 50 Hz                                                                          | ( <b>D</b> ) 1500 Hz                                                               |     |  |
|                                                                        | σ                                                                                                       |                                                                                             |                                                                                    |     |  |
|                                                                        | g. The unit step response of an LTI system with impulse response<br>$h(n) = \delta(n) - \delta(n-1)$ is |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         | $(\mathbf{A})  \delta(n-1)$                                                                 | $(\mathbf{B})  \delta(\mathbf{n})$                                                 |     |  |
|                                                                        |                                                                                                         | ( <b>C</b> ) $u(n-1)$                                                                       | ( <b>D</b> ) u(n)                                                                  |     |  |
|                                                                        | h. A system characterized by the system function $H(z) = \frac{1}{2}(1 + z^{-1})$ is a                  |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         | (A) lowpass filter                                                                          | (B) highpass filter                                                                |     |  |
|                                                                        |                                                                                                         | (C) bandpass filter                                                                         | ( <b>D</b> ) bandreject filter                                                     |     |  |
|                                                                        | i.                                                                                                      | The impulse response of a system<br>Then step response of the system is                     | is given by $h(n)=(1/2)^n u[n]$ .                                                  |     |  |
|                                                                        |                                                                                                         | $(\mathbf{A}) \ 2 \left[ 1 - \left(\frac{1}{2}\right)^{n+1} \mathbf{u}[\mathbf{n}] \right]$ | $(\mathbf{B}) \ 2 \left[ 1 - \left(\frac{1}{2}\right)^{n-1} \mathbf{u}[n] \right]$ |     |  |
|                                                                        |                                                                                                         | (C) $2\left[1-\left(\frac{1}{2}\right)^n u[n]\right]$                                       | <b>(D)</b> $1 - \left(\frac{1}{2}\right)^{n-1} u(n)$                               |     |  |
|                                                                        |                                                                                                         |                                                                                             | (2)                                                                                |     |  |
| j. In filter, the width of the 'Transition Band' is Characteristics of |                                                                                                         |                                                                                             |                                                                                    | ·   |  |
|                                                                        |                                                                                                         | (A) Fourier series                                                                          | (B) Fourier Transform                                                              |     |  |
|                                                                        |                                                                                                         | (C) Frequency domain                                                                        | <b>(D)</b> Time domain                                                             |     |  |
| Answer any FIVE Questions out of EIGHT Questions.                      |                                                                                                         |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         | Each question car                                                                           |                                                                                    |     |  |
| Q.2                                                                    | a.                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                       | -                                                                                  | (4) |  |
|                                                                        |                                                                                                         | (ii) Find out the power of the signal                                                       | $I x(t) = A \sin t$                                                                | (4) |  |
|                                                                        | b.                                                                                                      | Given x(t) as shown in Fig.2                                                                |                                                                                    | (8) |  |
|                                                                        |                                                                                                         | Sketch the following                                                                        |                                                                                    |     |  |
|                                                                        |                                                                                                         | (i) x(-2t)                                                                                  | (ii) x(t-3)                                                                        |     |  |
|                                                                        |                                                                                                         | (iii) $\mathbf{x}(t)\mathbf{u}(t)$                                                          | (iv) x(-t+1)                                                                       |     |  |
| x(t) 2                                                                 |                                                                                                         |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         |                                                                                             |                                                                                    |     |  |
| $-2$ $-1$ 0 1 2 3 t $\rightarrow$                                      |                                                                                                         |                                                                                             |                                                                                    |     |  |
| <b>Fig. 2</b>                                                          |                                                                                                         |                                                                                             |                                                                                    |     |  |
|                                                                        |                                                                                                         |                                                                                             |                                                                                    |     |  |

ROLL NO.


#### Code: AE57/AC57/AT57/AE112

Subject: SIGNALS AND SYSTEMS

Q.3 a. Determine the complex exponential fourier series of a square wave x(t) shown in Fig.3 (6)



- b. Let X[k] represent the DTFS coefficients of the periodic sequence x(n) with period N. Find the DTFS coefficients of  $(-1)^n x(n)$  (5)
- c. Find the Fourier Series representation of the signal x(t) shown in fig.4 (5)



- Q.4 a. State and prove the following properties of continuous time Fourier transform: (i) Time shifting (ii) Frequency differentiation (4+4)
  - b. (i) Verify the integration property, that is  $\int_{-\infty}^{t} x(\tau) d\tau \leftrightarrow \pi X(0) \delta(\omega) + \frac{1}{j\omega} X(\omega)$ (4)

(ii) Prove the frequency convolution theorem, that is (4)

$$\mathbf{x}_1(t)\mathbf{x}_2(t) \leftrightarrow \frac{1}{2\pi} \mathbf{X}_1(\omega) * \mathbf{X}_2(\omega)$$

**Q.5** a. For signal  $x(n) = \cos w_0 n$  with  $w_0 = 2\pi / 5$ , obtain and plot X (e<sup>jw</sup>). (4)

- b. State and prove following properties for discrete time Fourier transforms:
  (i) Time shifting
  (ii) Frequency shifting
  (2+2)
- c. State and Prove convolution property of Discrete Time Fourier Transform. Using it, determine the convolution  $x(n) = x_1(n) * x_2(n)$  of the sequences, where  $x_1(n) = x_2(n) = \delta(n+1) + \delta(n) + \delta(n-1)$  (8)

(8)

 $(4 \times 2)$ 

### Code: AE57/AC57/AT57/AE112 Q.6 a. State and explain Nyquist sampling theorem. Derive the expression for spectrum of a sampled signal.

#### b. Explain the following with suitable example: (8)

- (i) Response of LTI system with Linear and non-linear phase
- (ii) Group delay in LTI system

#### a. Give the properties of ROC of Laplace Transforms. (10)**O.7**

b. Show that for an LTI system, when the input is  $x(t) = e^{sot} u(t)$ , the output is of the form  $y(t) = H(s_0) e^{sot} u(t)$ . How is  $H(s_0)$  related to the impulse response of the system? (6)

#### **Q.8** a. Find the Z-transform of the following sequences and find their ROC (8) (i) $x[n] = \left\lceil \frac{1}{2} \right\rceil^{n-2} (\sin \Omega_0 (n-2)) u[n-2]$ (ii) $x[n] = (5)^n u[-n-1] - (3)^n u[n]$

- b. Find Inverse Z-Transform of following:  $(4 \times 2)$ (i)  $X(z) = 1/(1 - az^{-1}), |z| > |a|$ (ii)  $X(z) = \log(1 + az^{-1}), |z| > |a|$
- 0.9 a. Discuss the following: (i) Random processes (ii) Stationary processes
  - A random variable X has the uniform distribution given by b

$$f_{X}(x) = \frac{1}{2\pi}, \text{ for } 0 \le x \le 2\pi$$
  

$$\sum_{0, 0} \text{ otherwise}$$
Determine its mean and variance (8)

Subject: SIGNALS AND SYSTEMS