ROLL NO. _

Code: AE56/AC56/AT56/AE107/AC107/AT107 Subject: ENGINEERING MATHEMATICS - II

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

December - 2017

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The value of the integral $\int_{c} \frac{c^{iz}}{z+3i} dz$, where *c* is the circle |z+3i|=1, measured in the counter clockwise sense is

$(\mathbf{A}) 2\pi i$	(B) 0
(C) $2\pi i c^{-3}$	(D) $2\pi i c^3$

b. The residue of
$$\frac{1}{(z^2 + a^2)^2}$$
 at $z = ai$ is
(A) $\frac{i}{4a^3}$ (B) $-\frac{i}{4a}$
(C) $\frac{i}{a^3}$ (D) $\frac{2i}{a^3}$

c. The value of λ and μ by using vectors, such that the points (-1, 3, 2), (-4, 2, -2) and (5, λ , μ) lie on a straight line are (A) $\lambda=2$, $\mu=3$ (B) $\lambda=5$, $\mu=1$

	:1
(C) $\lambda = 5, \mu = 10$ (D) $\lambda = 4, \mu =$	-6

d. The values of $\int_{c} (x^2 + xy) dx \cdot (x^2 + y^2) dy$ where c is the square formed by the

to

li	nes is	
(4	A) 1	(B) 0
()	C) 2	(D) 5
e. If	$f(x) = 2x^3 - 3x^2 + 3x - 10$, then	$\Delta^3 f(x)$ is equal
(4	A) 10	(B) 15
(C) 0	(D) 12

ROLL NO.

- f. If f(3) = 24, f(5) = 120, f(8) = 504, f(9) = 720 and f(12) = 1716. Use Newton's divided difference formula to find f(7)(A) 335 (B) 336 (C) 337 (D) 338
- g. Eliminating *a*, *b* from z = (x + a)(y + b), we obtain the partial differential equation

(A) $z = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$	(B) $z = \left(\frac{\partial z}{\partial x}\right) \left(\frac{\partial z}{\partial y}\right)$
(C) $z = 1 + \left(\frac{\partial z}{\partial x}\right)^2$	(D) $z = x + \left(\frac{\partial z}{\partial y}\right)^2$

- h. The probability of throwing 9 with two dices is
 (A) 9/16
 (B) 13/18
 (C) 1/9
 (D) 3/4
- i. The probability of getting 4 heads in 6 tosses of a fair coin is

 (A) 1/32
 (B) 5/16
 (C) 15/64
 (D) 3/8
- j. What is the variance of the binomial distribution?

(A) <i>npq</i>	(B) \sqrt{npq}
(C) <i>np</i>	(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Test the analyticity of the function $w = \sin z$ and hence derive that $\frac{d}{dz}(\sin z) = \cos z$ (8)

b. Find the mapping of x-axis under the transformation $w = \frac{i-z}{i+z}$, onto the w-plane. (8)

Q.3 a. Expand
$$f(z) = \frac{1}{(z-1)(z-2)}$$
 for $1 < |z| < 2$. (8)

b. Determine the poles of the following function and residue at each pole: (8)

$$f(z) = \frac{z^2}{(z-1)^2(z+2)} \text{ and hence evaluate } \int_c \frac{z^2 dz}{(z-1)^2(z+2)} \text{ where } c:|z|=3.$$

Q.4 a. Show that $\vec{v}(x, y, z) = 2xyz\hat{i} + (x^2z + 2y)\hat{j} + x^2y\hat{k}$ is irrational and find a scalar function u(x, y, z) such that $\vec{v} = grad(u)$. (8)

ROLL NO.

Subject: ENGINEERING MATHEMATICS - II

- b. Find the directional derivative of $f(x, y, z) = x^2 y^2 z^2$ at the point (1, 1, -1) in the direction of the tangent to the curve $x = e^t$, $y = 2\sin t + 1$, $z = 1 \cos t$ at t=0. (8)
- **Q.5** a. If $\vec{F} = 2z\hat{i} x\hat{j} + y\hat{k}$, evaluate $\iiint_{v} \vec{F} dv$ where v is the region bounded by the surfaces $x=0, y=0, x=2, y=4, z=x^2, z=2.$ (8)
 - b. Verify Stoke's theorem for the function $f = x2\hat{i} xy\hat{j}$ integrated round the square in the plane z=0 and bounded by the lines x=0, y=0, x=a, y=a. (8)

Q.6 a. Solve
$$(x^2 - y^2)p + (y^2 - 2x)q = z^2 - xy$$
 (8)

- b. Solve the partial differential equation $(p^2 + q^2)y = qz$ by Charpit's method. (8)
- **Q.7** a. Find the cubic polynomial, which takes the following values

x	0	1	2	3			
f(x)	1	2	1	10			
Hence, evaluate $f(4)$.							

b. The velocity (v) of a car which starts from rest, is given at fixed intervals of time (t) as follows:

(8) 8 10 12 14 20 2 4 6 16 18 t 25 10 18 29 32 20 11 5 2 0 ν

Estimate approximately the distance covered by car in 20 units of time.

- Q.8 a. A husband and wife appear in an interview for two vacancies in the same post. The probability of husband's selection is 1/7 and that of wife selection is 1/5. What is the probability that (i) both of them will be selected (ii) only one of them will be selected (iii) none of them will be selected
 - b. In a bolt factory, machines A, B and C manufacture respectively 25%, 35% and 40% of the total. If their output 5, 4 and 2 percents are defective bolts. A bolt is drawn at random from the product and is found to be defective. What is the probability that it was manufactured by machine B? (8)
- **Q.9** a. The overall percentage of failures in a certain examination is 20. If six candidates appear in the examination, what is the probability that at least five pass the examination?
 - b. The diameter of an electric cable is assumed to be continuous random variable with probability density function:

$$f(x) = 6x(1-x), \quad 0 \le x \le 1$$

- (i) Verify that above is a probability density function.
- (ii) Find the mean and variance.

(8)

(8)

(8)