ROLL NO.

Code: AE51/AC51/AT51/AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS - I

AMIETE – ET/CS/IT (Current & New Scheme)

Time: 3 Hours

December - 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Q2 to Q8 CAN BE ATTEMPTED BY BOTH CURRENT AND NEW SCHEME STUDENTS.
- Q9 HAS BEEN GIVEN INTERNAL OPTIONS FOR CURRENT SCHEME (CODE AE51/AC51/AT51) AND NEW SCHEME (CODE AE101/AC101/AT101) STUDENTS.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2)

- a. The rank of the matrix $\begin{vmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{vmatrix}$ is (A) 1 (B) 2 (C) 3 (D) 4
- b. If $z = \sin^{-1}(x^2 + y^2)$, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to (A) $\tan z$ (B) $\cot z$ (C) $2 \tan z$ (D) $2 \cot z$
- c. The value of $\int_{0}^{1} \int_{0}^{x} x dy dx$ is (A) 3/2 (B) 1 (C) 2/3 (D) 1/3
- d. The approximation to a root of the equation f(x) = 0 by Regula-falsi method is

(A)
$$x_2 = \frac{x_0 f(x_1) - x_1 f(x_0)}{f(x_1) - f(x_0)}$$
 (B) $x_2 = \frac{x_1 f(x_0) - x_0 f(x_1)}{f(x_1) - f(x_0)}$
(C) $x_2 = \frac{x_0 f(x_0) - x_1 f(x_1)}{f(x_0) - f(x_1)}$ (D) $x_2 = \frac{x_1 f(x_1) - x_0 f(x_0)}{f(x_0) - f(x_1)}$

(2×10)

Code: AE51/AC51/AT51/AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS - I

e.	The solution of the differential equation $(3x^2 - 2xy)dx = x^2dy$ is	
	$(\mathbf{A}) \ x^3 - xy = c$	$(\mathbf{B}) \ x \ -x^3 y = c$
	(C) $x^3 - x^2 y = c$	(D) $x^3 - x^2 y^2 = c$
f.	The Wronskian of x and e^x is	
	(A) 1	(B) e^{x}
	(C) $x - e^x$	(D) $(x-1)e^{x}$
g.	The particular integral of $y'' - 4y' = \sin 2x$ is	
	(A) $\frac{-\sin 2x}{8}$	$(\mathbf{B}) \ \frac{-\cos 2x}{8}$
	(C) $\frac{-\sin 2x}{2}$	$(\mathbf{D}) \ \frac{-\cos 2x}{2}$
h.	$\beta(m + 1) + \beta(m + 1 + n) =$	
11.	$\beta(m, n+1) + \beta(m+1, n) =$	$(\mathbf{D}) \mathcal{O}(m, n)$
	(A) $\beta(m+1, n+1)$	(B) $\beta(m,n)$
	(C) $\beta(2m+1,n)$	(D) $\beta(m,2n+1)$.
i.	The value of $P_n(-1)$ is	
	$(\mathbf{A}) \ n$	(B) - <i>n</i>
	(C) $(-1)^n$	(D) None of these

j. The value of $J_2(x)$ in terms of $J_0(x)$ and $J_1(x)$ is

(A)
$$\frac{2}{x}J_1(x) - J_0(x)$$

(B) $\frac{4}{x}J_1(x) - J_0(x)$
(C) $\frac{2}{x}J_0(x) - J_1(x)$
(D) $\frac{4}{x}J_0(x) - J_1(x)$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. If
$$u = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$$
 then show
that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \sin 4u - \sin 2u$. (8)

b. Find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$. (8)

Q.3 a. Evaluate
$$\int_{0}^{1} \int_{0}^{\sqrt{2x-x^2}} \frac{xdydx}{\sqrt{x^2+y^2}}$$
 by changing to polar co-ordinates (8)

Code: AE51/AC51/AT51/AE101/AC101/AT101 Subject: ENGINEERING MATHEMATICS - I

Q.4

Q.5

Q.6

ROLL NO.

Find the volume of the tetrahedron bounded by the co-ordinate planes and the b. $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ plane (8) Test for consistency and solve by Gauss elimination method the system of a. equations: x + 4y - z = -5, x + y - 6z = -12, 3x - y - z = 4(8) Find the Eigen values and the corresponding Eigen vectors of the b. matrix $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. (8) Apply Newton-Raphson method to find a real root of the equation a. $3x = \cos x + 1$ correct to three decimal places. Take $x_0 = 0.5$. (8) b. Solve the system of equation 8x - 3y + 2z = 20, 4x + 11y - z = 33, 6x + 3y + 12z = 36using Gauss-Seidel method. Carry out four iterations. (8) Solve $(D^2 + 4)y = \tan 2x$ by method of variation of parameters (8) a. b. Solve $x \frac{dy}{dx} + y = x^3 y^6$. (8) a. Obtain the series solution of $\frac{d^2 y}{dx^2} + x^2 y = 0$. b. Prove that $\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$. Q.7 (8) (8)

Q.8 a. Prove that
$$\int_{-1}^{1} x^2 P_{n+1}(x) P_{n-1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$$
. (8)

b. Show that
$$x^2 J_n''(x) = (n^2 - n - x^2) J_n(x) + x J_{n+1}(x)$$
. (8)

(For Current Scheme students. i.e. AE51/AC51/AT51) **Q.9**

a. Solve
$$(xy^2 - e^{1/x^3})dx = x^2 y dy$$
. (8)

Form the differential equation of all circles of radius 'r' units (8) b.

Q.9 (For New Scheme students. i.e. AE101/AC101/AT101)

Find the Fourier cosine transform of e^{-x^2} (8) a. Use convolution theorem to evaluate $Z^{-1}\left\{\frac{z^2}{(z-a)(z-b)}\right\}$ b. (8)