ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

AMIETE – CS (Current & New Scheme)

Time: 3 Hours

December - 2017

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Seven distinct car accidents occurred in a week. What is the probability that they all occurred on the same day?
(A) 1/7⁷
(B) 1/7⁶

(A) 1/7'	(B) 1/7°
(C) $1/2^7$	(D) $7/2^7$

b. Identify the correct translation into logical notation of the following assertion. Some boys in the class are taller than all the girls.

Note: taller (x,y) is true if x is taller than y.

(A) $(\exists x) (boy(x) \rightarrow (\forall y) (girl(y) \land taller(x,y)))$

(B) $(\exists x) (boy(x) \land (\forall y) (girl(y) \rightarrow taller(x,y)))$

- (C) $(\exists x) (boy(x) \rightarrow (\forall y) (girl(y) \rightarrow taller(x,y)))$
- **(D)** $(\exists x) (boy(x) \land (\forall y) (girl(y) \land taller(x,y)))$
- c. Let A, B and C be non-empty sets and let X= (A–B)-C and Y= (A–C)-(B–C). Which one of the following is TRUE?
 (A) X=Y
 (B) X⊂Y
 (C) Y⊂X
 (D) None of these
- **d**. Consider the following propositional statements: P1: $((A \land B) \rightarrow C)) \equiv ((A \rightarrow C) \land (B \rightarrow C))$ P2: $((A \lor B) \rightarrow C)) \equiv ((A \rightarrow C) \lor (B \rightarrow C))$ Which one of the following is true?
 - (A) P1 is a tautology, but not P2
 - (**B**) P2 is a tautology, but not P1
 - (C) P1 and P2 are both tautologies
 - (**D**) Both P1 and P2 are not tautologies

e. The solution to the recurrence equation $T(2^k) = 3T(2^{k-1}) + 1$, T(1)=1 is **(A)** 2^k **(B)** $(3^{k+1}-1)/2$ **(C)** $3^{\log_2 k}$ **(D)** $2^{\log_3 k}$

1

f. "If X then Y unless Z" is represented by which of the following formulae in propositional logic?
(A) (X A Z) > V

$(\mathbf{A}) (X \land \neg Z) \rightarrow Y$	$(\mathbf{B}) (X \land Y) \rightarrow \neg Z$
(C) $X \rightarrow (Y \land \neg Z)$	$(\mathbf{D}) (X \rightarrow Y) \land \neg Z$

ROLL NO.

Code: AC65/AC116

Subject: DISCRETE STRUCTURES

- g. The set {1,2,3,5,7,8,9} under multiplication modulo 10 is not a group. Given below are four plausible reasons. Which one of them is false? (A) It is not closed (B) 2 does not have an inverse
 - (C) 3 does not have an inverse
- (D) 8 does not have an inverse
- h. Consider (Z,*) be an algebraic structure, where Z is the set of integers and the operation * is defined by n*m=maximum(n,m). Which of the following statements is true for (Z, *)?
 - (A) (Z, *) is a monoid (C) (Z, *) is a group
- **(B)** (Z, *) is an abelian group
- (D) None of these
- i. In the lattice defined by the Hasse diagram given in the following figure, how many complements does the element 'e' have?
 - **(A)** 2
 - **(B)** 3
 - **(C)** 0
 - **(D)** 1

Q

j. Let f: A \rightarrow B be an injective (one to one) function. Define g: $2^{A}\rightarrow 2^{B}$ as: g(C) = { f(x) $|x \in C|$, for all subsets C of A. Define h: $2^{B} \rightarrow 2^{A}$ as: h(D)= {x | x \in A, f(x) \in D}, for all subsets D of B.Which of the following statements is always true? (A) $g(h(D)) \subseteq D$ **(B)** $g(h(D)) \supseteq D$ (C) $g(h(D)) \cap D = \Phi$ **(D)** $g(h(D)) \cap (B-D) \neq \Phi$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a . If U= {1,2,3,4,5,6	5,7,8,9}, A={1,2,4,6,8}	and $B = \{2,4,5,9\}$, com	pute the following	(4)
	(i) $\overline{\mathbf{A}}$	(ii) $\overline{\mathbf{B}}$	(iii) $\overline{A} U \overline{B}$	(iv) $\overline{A \cup B}$	
	(v) $\overline{A} \cap \overline{B}$	(vi) $\overline{A \cap B}$	(vii) B-A	(viii) A-B	

b. A survey of a sample of 25 new cars being sold by an auto-dealer was conducted to see which of the three popular options: air-conditioning, radio and power windows, were already installed. The survey found: 15 had air-conditioning, 12 had radio, 11 had power windows, 5 had air- conditioning and power windows, 9 had airconditioning and radio, 4 had radio and power windows, and 3 had all the three options. Find the number of cars that had

(i) Only power windows	(ii) Only air-conditioning	
(iii) Only radio	(iv) Only one of the options	
(v) At-least one option	(vi) None of the options	(12)

0.3 a. Prove that, for any propositions p, q, r, the compound proposition $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$ is a tautology.

b. Prove the following logical equivalences without using truth table(s): (i) $p \lor [p \land (p \lor q)] \Leftrightarrow p$ (ii) $[p \lor q \lor (\neg p \land \neg q \land r)] \Leftrightarrow (p \lor q \lor r)$ (iii) $[(\neg p \lor \neg q) \rightarrow (p \land q \land r)] \Leftrightarrow p \land q$ (iv) $[(p \lor q) \land (p \lor \neg q)] \lor q \Leftrightarrow p \lor q$ (8)

Q.4 a. Test whether the following arguments are valid: (i) $p \rightarrow q$, $r \rightarrow s$, $p \lor r$. Hence $q \lor s$ (ii) $(\neg p \lor q) \rightarrow r, r \rightarrow (s \lor t), \neg s \land \neg u, \neg u \rightarrow \neg t$. Hence p (8)

b. (i) Write the following proposition in symbolic form and find its negation: "All integers are rational numbers and some rational numbers are not integers"

2

(8)

(ii) Write the following proposition in symbolic form and find its negation: "If all triangles are right-angled, then no triangle is equiangular" (iii) Let n be an integer. Prove that if n^2 is odd, then n is odd by indirect method of (8) proof. a. Prove by mathematical induction that, for every positive integer n, 5 divides n^5 -n. 0.5 (8) b. If F_i 's are the Fibonacci numbers and L_i 's are the Lucas numbers, prove that $L_n = F_{n-1} + F_{n+1}$ (8) Q.6 a. For any non-empty sets A,B,C, prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$ (3) b. Let A= {1,2,3,4,5}. Define a relation R on A×A by $(x_1,y_1)R(x_2,y_2)$ if $x_1+y_1=x_2+y_2$ (i) Verify that R is an equivalence relation on $A \times A$. (ii) Determine the equivalence classes [(1,3)], [(2,4)] and [(1,1)]. (iii) Determine the partition of A×A induced by R. (12)c. Let R be a relation on a set A. Prove that R is reflexive if R is irreflexive. (1) **0.7** a. Let f: $R \rightarrow R$ be defined by 3x-5 for x>0 f(x) =-3x+1 for x<0 Find $f^{-1}(0)$, $f^{-1}(1)$, $f^{-1}(-1)$, $f^{-1}(3)$, $f^{-1}(-3)$, $f^{-1}(-6)$. (3) b. The functions f: $R \rightarrow R$ and g: $R \rightarrow R$ are defined by f(x) = 3x+7 for all $x \in R$, and $g(x) = x(x^3-1)$ for all $x \in \mathbb{R}$. Verify that f is one-to-one but g is not. (3) c. Let f: $A \rightarrow B$, g: $B \rightarrow C$, h: $C \rightarrow D$ be three functions. Prove that $(h \circ g) \circ f = h \circ (g \circ f)$ (5) d. If f: $A \rightarrow B$ and g: $B \rightarrow C$ are invertible functions, then gof: $A \rightarrow C$ is an invertible function and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ (5) **Q.8** a. Let G be the set of all non-zero real numbers and let $a * b = \frac{1}{2}(ab)$. Show that (G,*) is an abelian group. (8) **b.** Consider the symmetric group S_3 and the sub group $H = \{p_0, p_5\}$ thereof. Find all the right cosets of H in S_3 and hence obtain a right coset decomposition of S_3 . (4) **c.** For a group G, prove that the function f: $G \rightarrow G$ defined by $f(a)=a^{-1}$ is an isomorphism if G is abelian (4) a. For the encoding function, E: $Z_2^2 \rightarrow Z_2^5$ defined by E(00)=00001, E(01)= 01010, **Q.9** E(10) = 10100, E(11) = 11111, find the minimum distance between the code words. Indicate the error-detecting and error-correcting capabilities of each code. (2)b. The generator matrix for an encoding function E: $Z_2^3 \rightarrow Z_2^6$ is given by 0 1 0 1 1 $G = \mathbf{0}$ 0 1 1 1 0 0 0 1 1 0 1 (i) Find the code words assigned to 110 and 010 (ii) Obtain the associated parity-check matrix (iii) Decode the received word: 110110 (iv) Show that the decoding of 111111 is not possible by using H (8) c. If the elements of a ring R form a cyclic group under addition, prove that R is commutative (3)

d. Prove that every finite integral domain is a field

3

AMIETE – CS (Current & New Scheme)

(3)