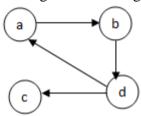
Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

AMIETE - CS/IT (Current & New Scheme)

Time: 3 Hours		Deember - 20	17]	Max. Marks: 100		
IMMI NOTI • Qu th • Th th	EDIATELY AFTER R E: There are 9 Questinestion 1 is compulsor e space provided for he answer sheet for the e commencement of the it of the remaining mestion carries 16 man	ry and carries 20 marks. And it in the answer book supplied Q.1 will be collected by the examination. EIGHT Questions answer	ON PAPER. Inswer to Q.1 must be deed and nowhere else invigilator after 45 er any FIVE Quest	e written in e. 5 minutes of tions. Each		
Q.1	Choose the correct	or the best alternative in th	e following:	(2×10)		
		a. Find out the result of the postfix expression 3 2 3 ^ + 3 2 1 + * -				
	(A) 2	(B) 3				
	(C) 4	(D) 5				
	b. The solution for power of 2 with (A) 2n-1 (C) 2n-2	recurrence relation $c_n = n + c_{\lfloor n/2 \rfloor}$ $n=2^k$ and $c_1=0$ (B) n-1 (D) 2n-3	•	en 'n' is a		
	(A) item is some(B) item is not in(C) item is the fi	 c. The worst case occur in linear search algorithm when (A) item is somewhere in the middle of the array (B) item is not in the array at all (C) item is the first element in the array (D) item is the last element in the array or item is not there at all 				
	d. The complexity of (A) O(n) (C) O(n ²)					
	e. Which of the foll (A) Bubble sort (C) Merge sort	owing sorting algorithm is of (B) Inser (D) Select	- '	ype?		
	f. Two main measu (A) processor and (C) time and spa		gorithm are plexity and capacity and space			

Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS


	g.	The time complexity of quick soft in	i average case is		
		(A) O(n)	(B) O(logn)		
		(C) O(n2)	(D) O(n logn)		
	h. The worst case time complexity of the nondeterministic dynamic knapsack algorithm is				
		$(A) O(n \log n)$	(B) O(log n)		
		(C) $O(n^2)$	$(\mathbf{D}) O(n)$		
	i. The Knapsack problem where the objective function is to minimize the				
		(A) Greedy	(B) Dynamic 0 / 1		
		(C) Back tracking	(D) Branch & Bound 0/1		
	j. What is the type of the algorithm used in solving the 8 Queens proble				
		(A) Greedy	(B) Dynamic		
		(C) Branch and Bound	(D) Backtracking.		
		Answer any FIVE Questions Each question can	<u>-</u>		
Q.2	a.	Define ADT and write short notes	on fundamental data structures.	(10)	
	b.	Show the stack after each operation empty stack:	n of the following sequence that starts		
		push(a), push(b), pop, push(c), push	h(d), pop	(6)	
Q.3	a.		~ n > 1	(9)	
		M(n) = M(n-1) + 1 + M(n-1) fo	I II / 1.	(8)	
	b.	Discuss the major asymptotic notat	ions	(8)	
Q.4	a.	Give the algorithm for selection some numbers 89 45 68 90 29 34 17	rt. Using selection sort, sort the follow	ring (8)	
	b.	Write notes on Brute-Force String	Matching	(8)	
Q.5	a.	Discuss Exhaustive search with tra-	velling salesman problem.	(8)	
	b.	With an example, explain Depth Fi	rst Search	(8)	

ROLL NO.	
HOLL HO.	

Code: AC64/AT64/ AC115/AT115 Subject: DESIGN & ANALYSIS OF ALGORITHMS

- Q.6 a. Give the algorithm for evaluating right-left binary exponentiation and left-right binary exponentiation (8)
 - b. Using Heap sort, sort the following

 2 9 7 6 5 8 (8)
- Q.7 a. With an example explain the knapsack problem. (8)
 - b. Define the transitive closure of a digraph. Compute the transitive closure for the following digraph using warshall's algorithm. (8)

- Q.8 a. Explain the concept of Dynamic programming using coin row problem (6)
 - b. Define B-tree. Create a B-Tree of order 4 with the following operation Insert: 5, 3, 21, 9, 1, 13, 2, 7, 10, 12, 4, 8 (10)
- Q.9 a. Explain the Dijkstra Algorithm for Single source shortest path. (6)
 - b. Using branch and bound method solve the following scheduling problem (10)

Jobs	1	2	3	4
pj	4	2	6	5
\mathbf{d}_{j}	8	12	11	10
\mathbf{r}_{j}	0	1	3	5