ROLL NO.

Code: DE61

Subject: ANALOG COMMUNICATIONS

Diplete – Et

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. Indicate the false statement. Modulation is used to
 - (A) reduce the bandwidth used
 - (B) separate differing transmissions
 - (C) ensure that intelligence may be transmitted over long distance
 - (**D**) allow use of practical antenna
- b. Amplitude modulation is the process of
 - (A) superimposing a low frequency on a high frequency
 - (B) superimposing a high frequency on a low frequency
 - (C) carrier interruption
 - (D) frequency shift and phase shift
- c. The value of a resistor creating thermal noise is doubled. The noise power generator is therefore

(A) halved	(B) quadrupled
(C) doubled	(D) unchanged

d. The modulation index of an AM wave is changed from 0 to 1. The transmitted power is

(A) unchanged	(B) halved
(C) doubled	(D) increase by 50 percent

e. FM signal with modulation index m is passed through a frequency tripler, the modulation index of the output is

(A)	m	(B) 9m
(C)	3m	(D) m/3

Code: DE61

Subject: ANALOG COMMUNICATIONS

f. Frequencies in UHF range generally propagates by means of

	(A) ground wave(C) space waves	(B) sky wave(D) surface waves
g.	The standard reference antenna for th	e directive gain is
	(A) dipole(C) half dipole	(B) isotropic(D) elementary doublet
h.	For low attenuation, best transmissio	n media is
	(A) Flexible waveguide(C) Rectangular waveguide	(B) Ridged waveguide(D) Coaxial cable
i.	The most common modulation system	m used for telegraphy is
	(A) frequency shift key(C) single tone modulation	(B) pulse code modulation(D) two tone modulation
:	Which of the following quaternic dia	ital

j. Which of the following system is digital

(A) pulse amplitude modulation	(B) pulse position modulation
(C) pulse width modulation	(D) pulse code modulation

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Draw and Explain block diagram of analog communication system.	(8)
	b.	Define noise in communication system and explain shot noise in detail.	(8)
Q.3	a.	Explain amplitude modulation (AM) in detail and derive the expression total power in a single tone AM signal.	for (8)
	b.	Draw and explain the block diagram of the filter method for single side b (SSB) modulator.	oand (8)
Q.4	a.	What are the advantages and disadvantages of FM over AM?	(8)
	b.	A carrier is frequency modulated with a sinusoidal signal of 2 kHz resultin a maximum frequency deviation of 5 kHz. Find the approximate band widt the modulated signal	ng in h of (4)
	c.	Compare wideband and narrowband Frequency modulation (FM).	(4)

Q.5	a.	Explain, with a neat block diagram, the working of a superheterodyne r receiver.	adio (10)
	b.	Explain, with a neat block diagram, foster seeley discriminator for detector.	FM (6)
Q.6	a.	Determine the length of the antenna operating at frequency of 500 (consider velocity factor 0.95).	kHz (4)
	b.	Explain the following terms with respect to antenna (i) Directive gain (ii) Radiation resistance (iii) Beam width.	(6)
	c.	Explain the construction and working of Yagi Uda antenna.	(6)
Q.7	a.	Explain the various types of propagation modes in rectangular waveguide.	(8)
	b.	 Explain the following terms with reference to sky wave propagation: (i) Maximum Usable frequency (ii) Critical frequency (iii) Skip distance (iv) Fading 	(8)
Q.8	a.	Explain in detail with suitable waveform pulse amplitude modulation, p width modulation and pulse position modulation.	oulse (9)
	b.	State Shannon-Hartley theorem. Calculate the capacity of the noisy cha having bandwidth of 3.1 kHz and signal to noise ratio of 32 dB.	nnel (7)
Q.9		Write short note on the following:(2(i) Time division multiplexing (TDM)	×8)

(ii) Advantages of fibre optics links over coaxial cable