ROLL NO.	
----------	--

Subject: NETWORKS & TRANSMISSION LINES Code: DE57

Diplete - ET

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- 0.1 Choose the correct or the best alternative in the following:

 (2×10)

a. Laplace transform of sin wt is:

$$(\mathbf{A}) \ \frac{s}{s^2 + w^2}$$

(B)
$$\frac{s}{s+w}$$

(C)
$$\frac{w}{s^2 + w^2}$$

$$(B) \frac{s}{s + w}$$

$$(D) \frac{s^2}{s^2 + w^2}$$

b. Applying maximum power transfer theorem, if the source impedance is equivalent to R + jX, the load impedance will be:

(A)
$$R + jX$$

(B) R only

(C)
$$R - jX$$

(D)
$$-jX$$
 only

- c. For determining h-parameters of a network, the measurements should be under the condition of:
 - (A) input port short; output port open
 - (B) both ports open
 - (C) both ports short
 - (**D**) input port open; output port short
- d. In a series resonant circuit, the impedance of the circuit at resonance is:
 - (A) minimum

(B) maximum

(C) infinite

- (**D**) zero
- e. The power factor at resonance in parallel RLC circuit is
 - (A) unity

(B) zero

(C) 0.8 lagging

(D) 0.8 leading

Code: DE57

Subject: NETWORKS & TRANSMISSION LINES

- f. A finite transmission line behave as an infinite line when the load end is:
 - (A) terminated by any impedance
 - (B) terminated by characteristic impedance of the line
 - (C) open circuited
 - (**D**) short circuited
- g. The characteristic impedance of transmission line is given as:

$$(\mathbf{A}) \sqrt{\frac{Z_{oC}}{Z_{SC}}}$$

(B)
$$\sqrt{Z_{OC} \times Z_{SC}}$$

(C)
$$Z_{OC} \times Z_{SC}$$

$$(D) \frac{Z_{OC}}{Z_{SC}}$$

- h. A stub matching is more effective if done:
 - (A) as close to the source as possible
 - **(B)** at a voltage maximum
 - (C) as close to the load as possible
 - (**D**) at a voltage minimum
- i. A band pass filter may be obtained by using a high pass filter followed by a:
 - (A) High pass filter
- (B) RC filter

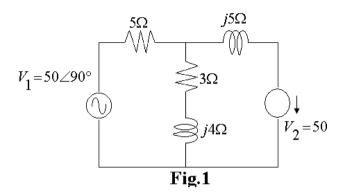
(C) RL filter

- (D) Low pass filter
- j. A simplest type of attenuator having only two resistors which can be used for matching between two unequal impedances is:
 - (A) Symmetrical T attenuator
- **(B)** Asymmetrical T attenuator
- (C) Asymmetrical π attenuator
- **(D)** Asymmetrical L attenuator

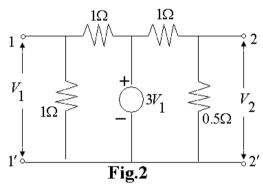
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Find the value of v(t) using Laplace transform if

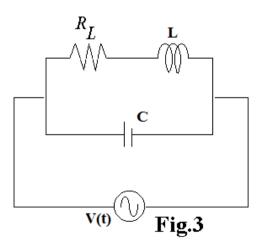
$$V(s) = \frac{s+2}{s(s+1) + (s+3)}$$


What is its value at $t = 0^+$ and $t = \infty$?

(4+2+2)


- b. State and prove the shifting theorem of Laplace Transform.
- (8)
- **Q.3** a. State and explain Thevenin's theorem. What are its limitations?
- (6+2)

Code: DE57 Subject: NETWORKS & TRANSMISSION LINES


b. Apply the superposition theorem to the network shown in **Fig.1** and obtain the current in the (3 + j4) Ohm impedance. (8)

Q.4 a. Find the z-parameters for the resistive network shown in Fig.2 (8)

- b. The z-parameters of a two port network are $Z_{11} = 10 \Omega$, $Z_{22} = 20\Omega$, $Z_{12} = Z_{21} = 20\Omega$. Find the ABCD parameters of this two port network. (8)
- Q.5 a. The circuit shown in **Fig.3** represents a parallel resonant circuit where R_L is the ohmic resistance of the inductor L. Find the resonant frequency of the circuit. (8)

ROLL NO.	

Code: DE57 Subject: NETWORKS & TRANSMISSION LINES

- b. A 220 V, 100 Hz AC source supplies a series LCR circuit with a capacitor and a coil. If the coil has 50 m Ω resistance and 5 mH inductance and resonant frequency of the circuit is 100 Hz, than find the value of capacitor. Also calculate Q factor and half power frequencies of the circuit. (4+2+2)
- Q.6 a. Define and explain phase velocity and group velocity of a uniform transmission line. (8)
 - b. The primary constants of a line per loop km are $R = 196 \Omega$; $C = 0.09 \mu F$; L = 7.1 mH and leakage conductance is negligible. Calculate the characteristic impedance and the propagation constant at angular frequency of 5000 radians/sec. (8)
- Q.7 a. Derive expression for input impedance of open and short circuited line and show that characteristic impedance $Z_0 = \sqrt{Z_{OC} \times Z_{SC}}$ (8)
 - b. A 100 km long transmission line is terminated by a resistance of 200 ohm. It has characteristics impedance $Z_0 = 600 \angle 0^{\circ}$ ohms, attenuation constant $\alpha = 0.01$ neper / km, phase shift constant $\beta = 0.03$ rad / km. Find the reflection coefficient and the impedance. (8)
- Q.8 a. Explain the operation and use of a quarter wave transformer. (8)
 - b. A low loss line with $Z_0 = 70 \Omega$ terminates in an impedance of $Z_R = 115 j80$. The wave length of the transmission is 2.5 metres; using the smith chart find:
 - (i) Standing wave ratio
 - (ii) Maximum and minimum line impedance
 - (iii) Distance between load and first voltage maximum (8)
- Q.9 a. Draw the circuit of a symmetrical-T attenuator and derive the design equation. (2+6)
 - b. Design m-derived low pass filter having a design impedance of 600Ω and cut-off frequency of 5000 Hz. The frequency of infinite attenuation is 6250 Hz.(8)