ROLL NO.

Code: DE56

Subject: ANALOG ELECTRONICS

Diplete – Et

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The most popular form of IC package is

(A) TO-5	(B) DIL
(C) Flat Pack	(D) All of these

b. The CC amplifier configuration has:

(A) high input impedance and high output impedance

- (B) high input impedance and low output impedance
- (\mathbf{C}) low input impedance and high output impedance
- (\mathbf{D}) low input impedance and low output impedance
- c. MOSFET uses the electric field of

(A) gate capacitance to control the channel current

- (B) barrier potential of p-n junction to control the channel current
- (\mathbf{C}) both (\mathbf{A}) and (\mathbf{B})
- (**D**) none of these
- d. The practical maximum efficiency for a class A power amplifier is usually:

(A) 25%	(B) 50%
(C) 75%	(D) none of these

e. The voltage gain of an OPAMP voltage follower is:

(A) zero	(B) unity
(C) infinite	(D) very high

f. The voltage gain of an inverting amplifier using OPAMP is

(A)
$$-\frac{R_f}{R_i}$$
 (B) $\frac{R_f}{R_i}$
(C) $1+\frac{R_f}{R_i}$ (D) $1-\frac{R_f}{R_i}$

g. All MOS OPAMPs are:

(A) more compact	(B) consume high power
(C) low CMMR value	(D) none of these

- h. In an amplifier that employs a P-Channel JFET, the device can usually be replaced with an N-channel JFET having similar specifications, provided that:
 - (A) All the resistors are reversed in polarity for the circuit in question
 - (B) The power supply polarity is reversed for circuit in question
 - (C) The drain, rather than the source, is placed at signal ground
 - (\mathbf{D}) The output is taken from the source, rather than the drain
- i. What does the discharge transistor do in the IC 555 timer circuit?
 - (A) Charges the external capacitor to stop the timing
 - (B) Charges the external capacitor to start the timing over again
 - (C) Discharges the external capacitor to stop the timing
 - (D) Discharges the external capacitor to start the timing over again
- j. An astable multivibrator has:
 - (A) one stable state
 - (**B**) both stable states
 - (C) one stable state and one quasi-stable state
 - (D) both quasi-stable states

0.5 μ A. Determine I_C, I_B, β , I_{CEO}

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	What is epitaxial layer? Describe one way which it can be created. (3+3)
	b.	Describe the methods used to fabricate capacitors in monolithic integrated circuits. (6)
	c.	It is desired to fabricate a 1.5 kΩ resistors using a diffused P Layer having sheet resistance 200Ω/squares.(4)(i) What aspect ratio should the resistor have?(ii) What should be the total length of the diffused region?
Q.3	a.	In an NPN silicon transistor $\alpha = 0.995$, $I_E = 10$ mA, leakage current $I_{CBO} =$

(6)

Code: DE56

Subject: ANALOG ELECTRONICS

b. Draw an h-parameter equivalent circuit for the CE circuit with voltage divider bias, a bypassed emitter resistor, a capacitor coupled signal source and capacitor coupled load. Briefly explain. (10)

Q.4	a.	Explain the operating Principle of N channel JFET.	(4)
	b.	Explain how an FET can be used as an Amplifier?	(4)
	c.	An N channel JFET has a pinch-off voltage of -4.5 V and $I_{DSS} = 9mA$	(8)
		(i) At what value of V_{GS} in the pinch-off region will $I_D = 3mA$ (ii) What is the value of $V_{DS(sat)}$ when $I_D = 3mA$	
Q.5	a.	Explain how LED different from an ordinary pn junction diode? Describe its construction in brief. (4+4)	
	b. Two amplifier stages are required to be coupled by a coupling transformer, it the output impedance of first stage is $12 \text{ k}\Omega$ while the input impedance of the second stage is $3 \text{ k}\Omega$. What should be the inductance of primary and seconda of the transformer so that prefect matching be obtained at a frequency of 250 Hz.		the ndary 50 (8)
Q.6	a.	What are the characteristics of ideal OPAMP?	(4)
	b.	Define the following parameters:	(4)

- Define the following parameters: b.
 - (i) Input bias current
 - (ii) CMMR
 - (iii) Slew Rate
 - (iv) Input offset voltage
- c. When the inputs to a certain differential amplifier are $v_{i1} = 0.1 \sin \varphi t$ and $v_{i2} = -0.1$ sinot. It is found that outputs are $v_{O1} = -5$ sinot and $v_{O2} = 5$ sinot. When both inputs are 2 sinot, the outputs are $v_{01} = -0.05 \text{ sinot}$ and $v_{O2} = 0.05 \text{ sin } \phi t$. Find the CMMR in dB. (8)
- **0.7** a. Draw and explain the working of OPAMP integrator. Draw input and output waveforms of the circuit. (5+3)
 - b. Design a practical differentiator that will differentiate signals with frequencies upto 200 Hz. The gain at 10 Hz should be 0.1 (8)
- **Q.8** a. What are the applications of Schmit Trigger? Explain the operation of Schmit Trigger. (8)
 - b. Draw the circuit of a Monostable Multivibrator using IC 555 timer and explain its operation. (8)

ROLL NO.

Code:	DE	Solution Subject: ANALOG ELECT	RONICS
Q.9	a.	Explain the basic technique used for DAC.	(4)
	b.	List the features of LM 723 Voltage Regulator.	(6)
	c.	As shown in Fig.1 Vin = 20V, $R = 200\Omega$ and $Vz = 12V$. If $V_{BE} = 0.65V$,	(6)

find (i) Vo

(ii) The collector to emitter voltage of the pass transistor and

(iii) The current in the 200Ω resistor