ROLL NO. _____

Code: DE108/DC108

Subject: LOGIC DESIGN

Diplete – et/cs {NEW SCHEME}

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1	Choose the correct or the best alter		
	a. The ASCII code is		
	(A) a two bit code(C) a seven bit code	(B) a four bit code(D) an eight bit code	
	b. A gate in which all inputs must be low to get a high output is called gate.		
	(A) AND (C) NOT	(B) NOR (D) NAND	
	c. Result of binary multiplication 10110 and 101 is		
	(A) 1110110(C) 1110010	(B) 1011110(D) 1101110	
	d. A half adder has		
	(A) one input and one output(C) two input and two output	(B) two input and one output(D) one input and two output	
	e. Which of the following is a combinational circuit?		
	(A) register(C) flip flop	(B) decoder(D) counter	
	f. In JK flip flop if we input K with the inverted form of what we input J, the resultant flip flop is		
	(A) SR flip flop(C) T flip flop	(B) D flip flop(D) JK flip flop itself	

1

g.	The number of flip flops required to reduce frequency by 32 is		
	(A) 3 (C) 5	(B) 4 (D) 6	
h.	h. A reliable method for eliminating the decoding glitches is		
	(A) strobing(C) parallel loading	(B) cascading(D) serial loading	
i.	Johnson counter is also known as		
	(A) up counter(C) decade counter	(B) down counter(D) twisted ring counter	
j.	j. In which of the following memory, stored data can be erased by exposing ultraviolet rays for a particular time period.		
	(A) PROM(C) EEPROM	(B) EPROM (D) RAM	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Perform the following conversions: (i) $(3742)_8 = (?)_{10}$ (ii) $(2A64)_{16} = (?)_2$ (iii) $(2047)_{10} = (?)_{16}$ (iv) $(1101011)_2 = (?)_{10}$	(8)
	b.	With the help of neat sketch explain serial and parallel transmission.	(5)
	c.	Draw functional diagram of digital computer.	(3)
Q.3	a.	Draw the symbol of AND and NOR gate and explain their working using table	truth (6)
	b.	Simplify the following expression using K map and implement it using I gate. $Y = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC} + A\overline{BC}$	ogic (6)

c. Draw the symbols and truth tables of XOR gate and XNOR gates. (4)

Q.4	a.	Draw logic circuit of 4-bit BCD adder and explain its working. (8)	,
	b.	Perform the following operation: $(2+2+2+2)$ (i) $(45)_{10} - (23)_{10}$ Using 2's complement method. (ii) $(10111)_2 - (100)_2$ (iii) $(385)_{10} + (118)_{10}$ Using BCD addition. (iv) Represent decimal value - 12 as an 8-bit signed binary value.	1
Q.5	a.	Draw the circuit of 4 bit serial in parallel out shift register and explain working.	
	b.	Draw logic circuit of 4 bit ring counter and explain its working with the help of truth table, waveforms and state diagram. (8)	р
Q.6	a.	What is encoder? Explain working of octal to binary encoder. (8)	1
	b.	What is de-multiplexer? Draw logic diagram of 1:8 de-multiplexer and explain its working. (8)	n
Q.7	a.	Draw the logic diagram NOR gate latch and its working using truth table. (8)	1
	b.	What is frequency division? How can flip flop be used for this application Also list other applications of flip flop. (2+4+2)	?
Q.8	a.	Explain working principle of decade counter with suitable logic diagram. (8)	1
	b.	What are synchronous counters? Design a Mod-6 synchronous counter using J-K Flip-Flops. (8)	g
Q.9	a.	What is RAM? Distinguish between SRAM and DRAM. (2+4)	1
	b.	How many address bits are required to access a 32 K memory? (2)	1
	c.	What is ROM? Draw 16×8 ROM architecture and explain its working. (8)	I