DipIETE - ET/Cs \{NEW SCHEME\}

Time: 3 Hours

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. Evaluation of $\operatorname{Lim}_{x \rightarrow \frac{\pi}{2}}(\sec x-\tan x)$ is equal to
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) does not exist
b. If $y=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$. , then $\frac{d y}{d x}$ is equal to
(A) x
(B) y
(C) $x+y$
(D) $x y$
c. The value of integral $\int \frac{d x}{x^{2}+2 x+5}$ is equal to
(A) $\frac{1}{2} \sin ^{-1} \frac{x+1}{2}$
(B) $\frac{1}{2} \cos ^{-1} \frac{x+1}{2}$
(C) $\frac{1}{2} \tan ^{-1} \frac{\mathrm{x}+1}{2}$
(D) $\frac{1}{2} \cot ^{-1} \frac{x+1}{2}$
d. Rank of matrix $\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15\end{array}\right]$ is
(A) 4
(B) 1
(C) 3
(D) 2
e. The differential equation $(2 x y+3 y) d x+\left(x^{2}+k x\right) d y=0$ is exact if k is equal to
(A) 3
(B) 4
(C) 2
(D) 6
f. The middle term in the expansion of $\left(\frac{x}{y}+\frac{y}{x}\right)^{6}$ is
(A) 10
(B) 15
(C) 20
(D) 25
g. The value of $\sin 105^{\circ}+\cos 105^{\circ}$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{\sqrt{3}}$
h. The area of the triangle with vertices (a, 0), (-a, 0) and $(0, b)$ is
(A) a^{2}
(B) b^{2}
(C) ab
(D) 0
i. The equation of the straight line which passes through the origin and makes an angle $\frac{3 \pi}{4}$ with x - axis is
(A) $y-2 x=0$
(B) $y+2 x=0$
(C) $y-x=0$
(D) $y+x=0$
j. The equation of circle which is concentric with the circle $x^{2}+y^{2}-8 x+12 y+43=0$ and which passes through $(6,2)$ is
(A) $x^{2}+y^{2}-8 x+12 y-16=0$
(B) $x^{2}+y^{2}+8 x-12 y+16=0$
(C) $x^{2}+y^{2}-8 x+12 y+8=0$
(D) $x^{2}+y^{2}+8 x+12 y-8=0$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. State and prove Leibnitz theorem for the $n^{\text {th }}$ derivative of the product of two functions.
b. Find the points at which the function $f(x)=(x-1)(x-2)(x-3)$ has a maximum and minimum values.
Q. 3 a. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
b. Integrate $\int \frac{x^{2}-3 x+4}{(x-2)(x+2)(x+4)} d x$
Q. 4 a. Compute the inverse of $\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$
b. Show that the equations $2 x+y+2 z=1$

$$
\begin{gather*}
x+2 y-z=2 \tag{8}\\
5 x+4 y+3 z=4
\end{gather*}
$$

are consistent and solve them.
Q. 5 a. Solve the differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x}-\sqrt{\left(\frac{y^{2}}{x^{2}}-1\right)} \tag{8}
\end{equation*}
$$

b. Solve the differential equation:
$e^{-y} \sec ^{2} y d y=d x+x d y$
Q. 6 a. If S_{1}, S_{2}, S_{3} be the sums of $n, 2 n, 3 n$ terms respectively of an A.P. show that $S_{3}=3\left(S_{2}-S_{1}\right)$
b. The sum of first and second terms of a G.P. is $\frac{5}{4}$ and the sum of the fourth and fifth terms is 80 . Find the first term and the common ratio.
Q. 7 a. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, show that $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$
b. In any triangle $A B C$, prove that $\tan \frac{B-C}{2}=\frac{b-c}{b+c} \cot \frac{A}{2}$
Q. 8 a. Find the equation of the line through the point of intersection of $5 x-3 y=1 \&$ $2 x+3 y=23$ and perpendicular to the line whose equation is $5 x-3 y=1$.
b. If p and p^{\prime} be the perpendiculars from the origin upon the straight lines whose equations are
and $\quad \mathrm{x} \cos \theta-\mathrm{y} \sin \theta=a \cos 2 \theta$
Prove that $4 p^{2}+\left(p^{\prime}\right)^{2}=a^{2}$
Q. 9 a. Find the vertex, focus, axis and the directrix of the parabola

$$
\begin{equation*}
y^{2}=x+2 y-2 \tag{8}
\end{equation*}
$$

b. Show that the sum of the focal distances of any point on an ellipse is constant and equal to the major axis.

