ROLL NO. ____

Code: DE101/DC101

Subject: ENGINEERING MATHEMATICS-I

Diplete – Et/CS {NEW SCHEME}

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:

a. Evaluation of $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ is equal to (A) 0 (B) 1 (C) $\frac{1}{2}$ (D) does not exist

b. If $y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$, then $\frac{dy}{dx}$ is equal to

c. The value of integral $\int \frac{dx}{x^2 + 2x + 5}$ is equal to

(A)
$$\frac{1}{2}\sin^{-1}\frac{x+1}{2}$$
 (B) $\frac{1}{2}\cos^{-1}\frac{x+1}{2}$

(C)
$$\frac{1}{2} \tan^{-1} \frac{x+1}{2}$$
 (D) $\frac{1}{2} \cot^{-1} \frac{x+1}{2}$

1

ROLL NO. ____

Code: DE101/DC101

d.	Rank of matrix	6	1	3	8	
		4	2	6	-1	ia
		10	3	9	7	18
		16	4	12	15	
	(A) 4					(B) 1
	(C) 3					(D) 2

e. The differential equation $(2xy + 3y) dx + (x^2 + kx) dy = 0$ is exact if k is equal to

(A) 3	(B) 4
(C) 2	(D) 6

f. The middle term in the expansion of $\left(\frac{x}{y} + \frac{y}{x}\right)^6$ is

g. The value of $\sin 105^{\circ} + \cos 105^{\circ}$ is equal to

(A)
$$\frac{1}{2}$$
 (B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$ (D) $\frac{1}{\sqrt{3}}$

h. The area of the triangle with vertices (a, 0), (-a, 0) and (0, b) is

(A) a^2	(B) b ²
(C) ab	(D) 0

i. The equation of the straight line which passes through the origin and makes an angle $\frac{3\pi}{4}$ with x – axis is

(A)
$$y - 2x = 0$$

(C) $y - x = 0$
(B) $y + 2x = 0$
(D) $y + x = 0$

j. The equation of circle which is concentric with the circle $x^2 + y^2 - 8x + 12y + 43 = 0$ and which passes through (6, 2) is

(A)
$$x^2 + y^2 - 8x + 12y - 16 = 0$$

(B) $x^2 + y^2 + 8x - 12y + 16 = 0$
(C) $x^2 + y^2 - 8x + 12y + 8 = 0$
(D) $x^2 + y^2 + 8x + 12y - 8 = 0$

Subject: ENGINEERING MATHEMATICS-I

ROLL NO. _

Subject: ENGINEERING MATHEMATICS-I

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. State and prove Leibnitz theorem for the nth derivative of the product of two functions. (8)
 - b. Find the points at which the function f(x) = (x-1)(x-2)(x-3) has a maximum and minimum values. (8)

Q.3 a. Evaluate
$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$$
 (8)

b. Integrate
$$\int \frac{x^2 - 3x + 4}{(x - 2)(x + 2)(x + 4)} dx$$
 (8)

Q.4 a. Compute the inverse of
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (8)

b. Show that the equations
$$2x + y + 2z = 1$$
 (8)
 $x + 2y - z = 2$
 $5x + 4y + 3z = 4$
are consistent and solve them.

Q.5 a. Solve the differential equation:
$$\sqrt{2}$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} - \sqrt{\left(\frac{y^2}{x^2} - 1\right)}$$

- b. Solve the differential equation: $e^{-y} \sec^2 y \, dy = dx + x \, dy$ (8)
- Q.6 a. If S_1 , S_2 , S_3 be the sums of n, 2n, 3n terms respectively of an A.P. show that $S_3 = 3(S_2 S_1)$ (8)
 - b. The sum of first and second terms of a G.P. is $\frac{5}{4}$ and the sum of the fourth and fifth terms is 80. Find the first term and the common ratio. (8)

(8)

Q.7 a. If A + B + C =
$$\pi$$
, show that sin A + sin B + sin C = $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (8)

b. In any triangle ABC, prove that
$$\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$$
 (8)

- **Q.8** a. Find the equation of the line through the point of intersection of 5x-3y = 1 & 2x + 3y = 23 and perpendicular to the line whose equation is 5x-3y = 1. (8)
 - b. If p and p' be the perpendiculars from the origin upon the straight lines whose equations are (8) $x \sec \theta + y \csc \theta = a$

and $x \cos \theta - y \sin \theta = a \cos 2\theta$ Prove that $4p^2 + (p')^2 = a^2$

- Q.9 a. Find the vertex, focus, axis and the directrix of the parabola (8) $y^2 = x + 2y - 2$
 - b. Show that the sum of the focal distances of any point on an ellipse is constant and equal to the major axis. (8)