ROLL NO. _____

Code: DC104

Subject: DATA STRUCTURES

Diplete- cs {NEW SCHEME}

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- Q.1 Choose the correct or the best alternative in the following:

 (2×10)

is the logical or mathematical model of a particular organization of data.

(A) Structure	(B) Variable
(C) Function	(D) Data Structures

b. The data structure that is known as a non-linear data structure?

(A) Array	(B) Stack
(C) Linked List	(D) Graph

c. _____ operation accesses each record exactly once so that certain items may be processed.

(A)	Inserting	(B) Deleting
(C)	Traversing	(D) Searching

d. _____ function of C is used to allocate a block of memory.

(A) malloc()	(B) calloc()
(C) free()	(D) realloc()

e. Which of the following linked list below have last node of the list pointing to the first node?

(A) Circular Doubly Linked List	(B) Doubly Linked List
(C) Circular Linked List	(D) Circular Singly Linked List

1

f. Which of the following approach is used by Merge Sort?

(A)	Divide and conquer	(B) Backtracking
(C)	Heuristic search	(D) Greedy approach

Code: DC104

g. A Binary tree is said to be a BST (Binary Search tree) if every node N in a tree is such that

(A) Left Subtree < N < Right Subtree	(B) N < Left Subtree < Right Subtree
(C) Left Subtree < Right Subtree < N	(D) Right Subtree < Left Subtree < N

- h. Which of the following way follows in Inorder traversal?
 - (A) Root \rightarrow Left subtree \rightarrow Right subtree (B) Root \rightarrow Right subtree \rightarrow Left subtree (C) Left subtree \rightarrow Root \rightarrow Right sub tree (D) Left sub tree \rightarrow Right subtree \rightarrow Root
- i. The worst case and average case complexity of Bubble Sort algorithm is given by

(A) Both $O(n^2)$	(B) $O(n^2)$ and $O(n \log n)$
(C) $O(\log n)$ and $O(n^2)$	(D) Both $O(n \log n)$

j. A complete graph with N nodes will have ______ edges.

(A) $[n(n-1)/2]$	(B) [(n-1)(n+1)/2]
(C) $[n(n+1)/2]$	(D) [(n-1)/2]

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Discuss the procedure of writing a Recursive function. Also write C programs for the following with the explanation in support of your answer: (4+4)

(i) To find the sum of n numbers by recursion.(ii) To reverse a given number.

- b. Explain the memory Allocation in C and distinguish between compile time (static) and run time (dynamic) memory allocation. (8)
- Q.3 a. How a pointer can be used to access the members of a structure? Explain by C programs as examples.
 (8)
 - b. Describe Major File operations with examples as C programs. (8)
- Q.4 a. Describe linear and binary search with their algorithms. (8)
 - b. Write a C Program code for binary search using recursion. (8)

2

Code: DC104

Subject: DATA STRUCTURES

(8)

(4+4)

(8)

- Q.5 a. Discuss the concept of Stack and Queues and write the C programs that demonstrate the following: (2+3+3)
 - (i) Push and Pop operations in a stack
 - (ii) Insert and Delete operations in a Queue.
 - b. Briefly describe the Circular Queue. Show the procedure of adding and deleting an element from a circular queue by a C programming function. (8)
- **Q.6** a. Define a singly Linked List. Write a C Program for appending a new node in the end as well as deleting the beginning or first node of the created linked list.
 - b. Give a C program module that shows the Insert, find, delete and print operations in a Singly Linked list. (8)
- **Q.7** a. Write short notes on the following:
 - (i) Circular linked lists(ii) Doubly linked lists
 - b. Write a C program which demonstrates the merging of two circular lists. (8)
- Q.8 a. Express the non recursive algorithms for the Inorder and Preorder traversal of a binary tree. (8)
 - b. Write the following algorithms:
 - (i) Write the algorithm for testing that a given binary tree is BST (Binary Search tree) or not.

(ii) Express the algorithm of inserting a node k in a BST (binary search tree) with a brief analysis.

- Q.9 a. Distinguish between the Breadth first search (BFS) and Depth first search (DFS) traversal techniques of a graph in detail.(8)
 - b. Discuss the Kruskal's Algorithm with its analysis and apply it to find the minimum cost spanning tree for the following undirected graph: (4+4)

