ROLL NO.

Code: AE74

Subject: VLSI DESIGN

AMIETE – ET

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The unit of power density is

(A) W/cm^3	$(\mathbf{B}) \mathrm{cm}^3$
(C) W/cm^2	$(\mathbf{D}) \mathrm{W}^3$

b. A layer of SiO_2 is grown all over the surface of the wafer to

(A) Achieve an even distribution	(B) Protect UV light
(C) Protect Surface	(D) All of these

c. The MOS transistor conductance is given by

(A) $g_m = \beta(Vgs - Vt)$	(B) $g_m = \beta / (Vgs - Vt)$
(C) $g_m = (Vgs - Vt) / \beta$	(D) $g_m = \beta (Vgs - Vt) V_{SB}$

d. The minimum transit time for an electron to travel from source to drain can be calculated as

(A) $V_{drift} = \mu/E$	(B) $V_{drift} = E/\mu$
(C) $V_{drift} = \mu E$	(D) $V_{drift} = \mu E/d$

e. Metal can cross poly-silicon or diffusion without any significant effect

(A) TRUE	(B) FALSE
(C) VIA is required	(D) Interconnection Forms

f. In Lambda based rules, λ is related to

(A) Interconnect Length	(B) Oxide Layer
(C) Poly Layer	(D) Resolution of the process

Subject: VLSI DESIGN

g. The total propagation delay time T in Carry Skip Adder is given by

$(\mathbf{A}) \mathbf{T} = \mathbf{n}/\mathbf{M}$	(B) $T = 2 (P-1) K_1 + (M-2) K_2$
(C) $T = 2 (P-1) K_1$	$(\mathbf{D}) \mathbf{T} = \mathbf{M}/\mathbf{n}$

h. The dynamic power consumption P_d can be written as

$(\mathbf{A}) \mathbf{P}_{d} = \mathbf{C}_{L} \mathbf{V}_{DD} \mathbf{f}$	$(\mathbf{B}) \ \mathbf{P}_{d} = \mathbf{C}_{L} \ \mathbf{V}^{2}_{DD} \ \mathbf{f}$
(C) $P_d = m (C_L V_{DD}^2 f)$	(D) None of these

i. The gate area of the device is

$(\mathbf{A}) \mathbf{A}_{g} = \mathbf{C}_{ox} \mathbf{L} \mathbf{W}$	$(\mathbf{B}) \mathbf{A}_{g} = \mathbf{L} \mathbf{W}$
(C) $A_g = LW/C_{ox}$	$(\mathbf{D}) \mathbf{A}_{g} = \mathbf{C}_{o} \mathbf{L}$

j. The Volatile memories are

(A) DRAM	(B) SRAM
(C) ROM	(D) EPROM

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Compare the available technologies in IC's Design.	
	b.	With neat sketch explain the enhancement mode transistor action.	(8)
	c.	Draw the cross sectional view of CMOSinverter (P-WELL).	(4)
Q.3	a.	Explain CMOS inverter with all the region of operations.	(8)
	b.	Define Stick Diagram. Explain the CMOS encodings in it.	(8)
Q.4	a.	Write the circuit and stick diagram for: (i) two input CMOS NOR gate (ii) f = [(xy) + z]'	(8)
	b.	Draw and explain nMOS enhancement mode pull-up and transfer characte	ristic.
Q.5	a.	Write short notes on – (i) Contact and Via Resistance (ii) Silicides	(8) (8)
	b.	Draw the schematic of Inverting Type nMOS Super Buffer and expla functionality briefly.	in its (8)
Q.6	a.	Discuss the Limitations of Scaling in VLSI Designs.	(8)
	b.	Explain Structured Design Approach – Regularity with example.	(8)

			ROLL NO	
Code: A	E7	4 Su	ıbject: VLSI DE	SIGN
Q.7	a.	Design and explain 4 X 4 barrel shifter.		(8)
	b.	Explain how to implement ALU functions with an add	er?	(8)
Q.8	a.	Write the circuit of one transistor dynamic RAM cel and write functions.	l and explain briefly	y read (8)
	b.	Explain the optimization of CMOS Inverters.		(8)
Q.9	a.	Explain the different requirements of large system desi	igns in silicon.	(8)
	b.	Explain how the interface with the fabrication house de	esigner must establis	h. (8)