Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Selecting THREE questions from part A and TWO questions from part B.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. A BFS in transportation problem has ______ cells with positive allocation.

(A) m	(B) $m \times n$
(C) $m + n - 1$	(D) $m + n$

b. Big-M method is used for

(A)	Transportation
------------	----------------

- (C) Assignment problem
- (B) Game theory(D) LPP

c. CPM is

(A)	Correct project management
(C)	Critical project management

- (B) Critical path method
- nent (**D**) Correct path method
- d. A transportation problem is called balanced if:

(A)
$$\sum_{i} a_{i} = \sum_{j} b_{j}$$

(B)
$$\sum_{i} a_{i} < \sum_{j} b_{j}$$

(C)
$$\sum_{i} a_{i} > \sum_{j} b_{j}$$

(D)
$$\sum_{i} a_{i} \neq \sum_{j} b_{j}$$

e. Slack variable is added to

(A) A constraint of \leq type(B) A constraint of \geq type(C) An equation(D) None of these

- f. An assignment problem is said to be balanced if:

 - (C) Rows > Columns
- (B) Rows < Columns
- (**D**) None of these

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

g. Time series analysis is used in:

(A) Game Theory	(B) Motivation Theory
(C) Queuing Theory	(D) Forecasting

h. In game theory, the measure of satisfaction that a player gets at the end of each game is called:

(A) Payment	(B) Cost
(C) Zero-sum	(D) Pay-off

i. Who is known as the "father of modern management theory"?

(A) Frederick Taylor	(B) Henry Fayol
(C) Douglas McGregor	(D) Clayton Alderfer

j. Maslow's need hierarchy theory is related to

(A) Leadership	(B) Organization
(C) Motivation	(D) Decision Making

PART A Answer any THREE Questions. Each question carries 16 marks.

Q.2 a. What are the various techniques available for solving OR problems? (4)

2

- b. Sandow limited has two products, Rose and Lotus. To produce one unit of Rose, 2 units of material X and 4 units of material Y are required and to produce one unit of Lotus 3 units of X and 2 units of material Y are required. At least 16 units of each material must be used in order to meet the committed sales of the two products. Cost per unit of material X and material Y are Rs. 2.50 and Rs. 0.25 respectively. Formulate the problem as LPP and solve it graphically to minimize the total cost. (12)
- **Q.3** a. Write the dual of the following LPP:

(4)

(12)

 $\begin{array}{l} \text{Minimum } z = 4x_1 + 6x_2 + 18x_3 \\ \text{Subject to:} \quad x_1 + 3x_2 \geq 3 \\ x_2 + 2x_3 \geq 5 \text{ and } x_j \geq 0, j = 1, 2, 3 \end{array}$

b. Solve the following LPP:

 $\begin{array}{ll} \mbox{Minimize} & z = 8x_1 - 2x_2 \\ \mbox{Subject to:} & -4x_1 + 2x_2 \leq 1 \\ & 5x_1 - 4x_2 \leq 3 \\ & x_1 \ , \ x_2 \geq 0 \end{array}$

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

Q.4 a. Build the mathematical model for the following transportation problem, where the objective is to minimize the costs involved in transporting goods from factory to warehouses. (4)

	W_1	W ₂	W ₃	W_4	supply
F ₁	1	2	4	4	6
F_2	4	3	2	0	8
F ₃	0	2	2	1	10
	4	5	8	6	

b. Five lathers are to be allotted to five operators (one for each). The following table gives weekly output figures (in pieces): (12)

			Weekly	Output		
		L_1	L_2	L ₃	L_4	L ₅
	Р	20	22	27	32	36
Operators	Q	19	23	29	34	40
	R	23	28	35	39	34
	S	21	24	31	37	42
	Т	24	28	31	36	41

Profit per piece is Rs. 25. Find the maximum profit per week.

- **Q.5** a. Distinguish between total float and free float.
 - b. A project consists of eight activities with the following time estimates: (10)

Activity	Immediate Predecessor		Time (days)	
		Optimistic	Most	Pessemistic
			Likely	
А		1	1	7
В		1	4	7
С		2	2	8
D	А	1	1	1
Е	В	2	5	14
F	С	2	5	8
G	D, E	3	6	15
Н	F, G	1	2	3

(i) Draw a PERT network with the above information.

(ii) Determine the critical path

- (iii) Find Earliest Start, Earliest Finish, Latest Start, Latest Finish times for each activity
- (iv) Also find Total Float

(6)

3

Code: AE62/AC62/AT62 Subject: OPERATIONS RESEARCH & ENGG. MANAGEMENT

Q.6 a. Define saddle point in a two-player zero-sum game. Find out the saddle point for the given pay-off matrix: (4)

	3	4	1	-2]
A =	2	5	2	4
	5	2	1	0

b. Arrivals at a telephone booth are considered to be following Poisson distribution with an average time of 10 minutes between one arrival and the next. Length of a phone call is assumed to be distributed exponentially with mean 3 minutes. Find: (12)

(i) What is the probability that a person arriving at the booth will have to wait?

(ii) What is the average length of the queue that is formed time to time?

(iii) The telephone department will install a second booth when convinced that an arrival would expect waiting for at least 3 minutes for phone. By how much should the flow of arrivals increase in order to justify a second booth?

PART B Answer any TWO questions. Each question carries 16 marks.

Q.7	a.	Justify 'Management is an art or science'.	(8)
	b.	Define the principles of management given by Henry Fayol.	(8)
Q.8	a.	Define the various steps involved in the process of decision making.	(8)
	b.	Differentiate between qualitative methods and quantitative methods of forecasting.	(8)
Q.9		 Write short notes on any <u>TWO</u> of the following: (i) Leadership styles (ii) Market segmentation (iii) Types of Communication 	(8×2)

4