ROLL NO. _

Code: AE60

Subject: INSTRUMENTATION AND MEASUREMENTS

AMIETE – ET

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

a. A measure of the repeatability of a measurement of some quantity is

(A)	Accuracy	(B) Error
(C)	Reproducibility	(D) Precision

b. An integrator contains 100K Ω and 1µF capacitor. If the voltage applied to the integrator input is 1V, then the output voltage of integrator after 1 second is

(A)	10V	(B)	1V
(C)	5 V	(D)	15 V

c. A digital voltmeter has a read-out range from 0-9,999 counts. The resolution of the instrument for full scale reading is 9.999V is _____

(A) 11 mV	(B) 11 V
(C) 1mV	(D) 1 V

d. Device similar to an RTD but has a negative temperature coefficient is _____

(A)	Strain Gauge	(B)	Thermistor
(C)	Thermocouple	(D)	Negative-type RTD

e. The value of the multiplier resistance on the 50V dc voltmeter that uses a $500\mu A$ meter movement with an internal resistance of $1K\Omega$ is _____

(A)	2kΩ	(B) 20KΩ
(C)	99Ω	(D) 99KΩ

Code: AE60 Subject: INSTRUMENTATION AND MEASUREMENTS

- f. Capacitance can be measured by _
 - (A) Maxwell's bridge (B) Schering bridge
 - (C) Kelvin bridge (D) Wien's bridge
- g. An aquadag is used in a CRO to collect _____
 - (A) primary electrons
 - (**B**) secondary emission electrons
 - (C) both primary and secondary emission electrons
 - (**D**) none of these
- h. X-Y recorders records _____
 - (A) one variable with respect to another variable
 - (B) one variable on X-axis with respect to time on Y-axis
 - (C) one variable on Y- axis with respect to time on X-axis
 - (**D**) none of these
- i. The inductance of the coil using Q- meter can be calculated by the expression

(A) $\frac{1}{2\pi f C}$ henry	(B) $\frac{1}{(2\pi f)^2 C}$ henry
(C) $2\pi f$ C henry	(D) $(2\pi f)^2 C$ henry

j. A bolometer is used for the measurement of _____

(A) transmission loss(B) high voltages(C) micro-wave power(D) VSWR

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. What are 'systematic errors' in electric and electronic measuring instruments? Discuss these errors giving suitable examples. (8)
 - b. A voltmeter reading 70V on its 100V range and an ammeter reading 80 mA on its 150 mA range are used to determine the power dissipated in a resistor. Both these instruments are guaranteed to be accurate within $\pm 1.5\%$ at full scale deflection. Determine the limiting error of power. (8)
- Q.3 a. Find the equivalent series resistance and inductance of Rx and Lx at balance for a given bridge: (6)

Fig.1

- b. Derive the equations of balance for an Anderson's bridge. Draw the phasor diagram for the conditions under balance. Discuss the advantages and disadvantages of the bridge. (10)
- Q.4 a. Explain the principle of operation of thermocouple. (8)
 - b. Calculate the multiplier resistor required for a 100Vrms range on the voltmeter shown in given fig.2 (8)

Fig.2

Q.5	a. Explain the merits and limitations of DVM over analog voltmeter.	(8)
	b. Explain with the help of a neat diagram, the working of a digital frequenter.	uency (8)
Q.6	a. Explain the working of a square pulse generator.	(8)
	 b. Explain the following with reference to a CRO: (i) Vertical amplifier (ii) Horizontal Deflection system 	(8)
Q.7	a. Explain with the help of a neat diagram, the working of a spectrum anal	yzer.(8)
	b. Explain power measurement using Bolometer Bridge. Draw neat sche diagram.	matic (8)

ROLL NO.

Code: AE60 Subject: INSTRUMENTATION AND MEASUREMENTS

Q.8a. Explain the working of a potentiometric recorder.(8)b. Discuss in detail the objectives and requirements of recording data.(8)Q.9a. Discuss the merits and limitations of RTDs.(8)b. Consider the following bridge circuit:(8)

Fig.3

The galvanometer resistance is 75 Ω . The strain gauge resistance $R_2 = R_3 = 120\Omega$ and $R_1 = 100\Omega$ at zero strain and the resistor R_4 is adjusted to balance the bridge at zero-strain conditions. The gauge factor is 2.5. Calculate the output voltage when the strain is 400×10^{-6} . Take the battery voltage as 9.0 V