ROLL NO.

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The Fourier transform of the exponential signal $e^{-j\omega_0 t}$ is:

(A) a constant	(B) a rectangular pulse
(C) an impulse	(D) impulse train

b. The system characterized by the equation y(t) = a x(t)+b is

(A) linear if $b < 0$	(B) linear if b > 0
(C) linear for any value of b	(D) non- linear

c. A band pass signal extends from 1 KHz to 4 KHz. The minimum sampling frequency needed to retain all information in the sampled signal is

(A) 1 KHz	(B) 6 KHz
(C) 3 KHz	(D) 4 KHz

d. The Fourier Transform of a rectangular pulse existing between t = -T/2 to t = T /2 is a

(A) $(sinc)^2$ function	(B) sinc function
(C) (sine) ^{2} function	(D) sine function

e. $\delta(n-N) * \delta(n+N)$ will result in

(A) 0	(B) N
(C) Always 1	(D) can't decide from given data

f. Fourier Transform pair $x(t) \leftrightarrow 2\pi(-w)$ represents _____ property.

(A) Duality	(B) Time-reversal
(C) Symmetry	(D) Both (A) and (B)

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

g. The discrete-time signal x(n) shown in Fig.1 is periodic with fundamental period

(ii) Determine analytically the signal is periodic or not if periodic, state the period

b. Do as directed:

O.2

(i) Plot x(n) and also plot y[n] = x[n+1] where x[n] is defined as below:

$$x[n] = \begin{cases} 0 & \text{if } n < 2\\ 2n - 4 & \text{if } 2 \le n \le 4\\ 4 - n & \text{if } 4 \le n \end{cases}$$

- (ii) Determine convolution of $x(t) = e^{2t}u(-t)$ and h(t) = u(t-3) and plot resultant y(t).
- (iii) Let h(n) be the impulse response of the LTI causal system described by the difference equation
 y(n) = a y (n-1) + x(n) and let h(n)* h₁(n) = δ(n).
 Find h₁(n).
- c. Differentiate between Energy and Power signal.

(3)

 (3×3)

Subject: SIGNALS AND SYSTEMS

a. Compute the Fourier series for the following signal shown in Fig.2. (8) 0.3

- b. Consider an LTI system with impulse response $h(n) = \alpha^n u(n)$, $-1 < \alpha < 1$; and with the input x(n) = cos ($2\pi n/N$). Determine y(n). (8)
- a. State and explain convergence conditions for continuous-time Fourier 0.4 transform. (4)
 - b. Consider a stable LTI system characterized by the differential equation: dy(t)/dt + 5 y(t) = x(t). Determine the (i) frequency response and (ii) impulse response for the system. (4×2)
 - c. State and prove following properties for continuous time Fourier transforms:
 - (i) Conjugation
 - (ii) Time shifting
 - (iii) Differentiation
 - (iv) Duality

Q.5 a. Consider a stable Causal LTI system whose input x(n) and output y(n) are related through second order difference equation y(n) - (3/4) y(n-1) + (1/8) y(n-2) = 2 x(n); determine the response for the given input $x(n) = (1/4)^n u(n)$ (8)

- b. For signal $x(n) = \cos w_0 n$ with $w_0 = 2\pi/5$, obtain and plot X (e^{JW}). (4)
- c. State and prove following properties for discrete time Fourier transforms: (i) Time shifting (2×2)
- (ii) Frequency shifting
- **Q.6** a. Explain the concept of :
 - (i) Non-linear phase
 - (ii) Group delay
 - (iii) Continuous-time ideal low pass filter
 - (iv) First order continuous time system
 - b. Define sampling, aliasing and Nyquist interval. For the following signal x (t), calculate Nyquist rate.

$$x(t) = 6\cos 50\pi t + 20\sin 300\pi t - 10\cos 100\pi t$$
(8)

(4)

 (4×2)

Subject: SIGNALS AND SYSTEMS

Q.7	a.	Discuss the all-pass system using Laplace transform with necessary diagrams. (6)	
	b.	Obtain the Laplace transform of: (i) $x(t) = e^{-at} u(t)$ (ii) $x(t) = -e^{-at} u(-t)$	(2×3)
	c.	State initial value and final value theorems for Laplace Transform. All its usefulness.	lso state (4)
Q.8	a.	Let the z- transform of $x(n)$ be $X(z)$. Show that the z-transform of x (-n) is $X(1/z)$	(4)
	b.	Determine the region of convergence of the z-transform of the signal $x(n) = 2^n u(n) - 3^n u(-n-1)$	(4)
	c.	Find Inverse Z-Transform of following: (i) $X(z) = 1/(1 - az^{-1}), z > a $ (ii) $X(z) = \log(1 + az^{-1}), z > a $	(2×4)
Q.9	a.	Explain the following random processes: (i) ergodic (ii) non-ergodic (iii) stationary (iv) non-stationary	(4×2)

b. A random variable V = b + x; where x is a Gaussian distributed random variable with mean 0 and variance σ^2 with 'b' a constant. Show that V is a Gaussian distributed random variable with mean b and variance σ^2 . (8)