ROLL NO.

Code: AE54/AC54/AT54

Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions, selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- (2×10)
- a. A logic circuit that provides a HIGH output if one input or the other input, but not both, is HIGH, is a(n):

(A) Ex-NOR gate	(B) OR Gate		
(C) Ex-OR Gate	(D) NAND Gate		

b. Determine the values of A, B, C, and D that make the sum term A+B+C+D equal to zero.

(A) A = 1, B = 0, C = 0, D = 0	(B) $A = 1, B = 0, C = 1, D = 0$
$(\mathbf{C}) \mathbf{A} = 0, \mathbf{B} = 1, \mathbf{C} = 0, \mathbf{D} = 0$	(D) A = 1, B = 0, C = 1, D = 1

c. The output of an exclusive-NOR gate is 1. Which input combination is correct?

(A) A = 1, B = 0	(B) $A = 0, B = 1$
(C) $A = 0, B = 0$	(D) none of these

d. How is a J-K flip-flop made to toggle?

(A) J = 0, K = 0	(B) $J = 1, K = 0$
(C) $J = 0, K = 1$	(D) $J = 1, K = 1$

e. A MOD-16 ripple counter is holding the count 1001₂. What will the count be after 31 clock pulses?

(A) 1000 ₂	(B) 1010 ₂
(C) 1011 ₂	(D) 1101 ₂

1

ROLL NO.

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

f. Refer to Fig. 1, if the value of R₁ decreases, the voltage gain will ______ and the input impedance will ______.

Fig.1

(A) increase, increase respectively	(B) increase, decrease respectively
(C) decrease, decrease respectively	(D) decrease, increase respectively

g. What is the slew rate of an op-amp if the output voltages change from 2 V to 3 V in 0.2 ms?

(A) 5 V/ms	(B) 3 V/ms
(C) 2 V/ms	(D) 1 V/ms

h. The _____ is defined as the time the output is active divided by the total period of the output signal.

(A) on time	(B) off time		
(C) duty cycle	(D) active ratio		

i. Which mode of operation is being used when a 555 timer chip has two external resistors and an external capacitor?

(A) monostable	(B) pulse stretching		
(C) Schmitt triggering	(D) astable		

j. The resolution of a 0-5 V, 6-bit digital-to-analog converter (DAC) is

(A) 63%	(B) 64%
(C) 1.56%	(D) 15.6%

ROLL NO.

(4)

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

PART (A)

Answer At least TWO questions. Each question carries 16 marks.

- **Q.2** a. Give the classification of different IC technologies.
 - b. For a differential amplifier using ideal op-amp(Shown in Fig. 2)
 - (i) Find the output voltage $v_{\rm o}$
 - (ii) Show that the output corresponding to common-mode voltage

$$v_{CM} = \frac{(v_1 - v_2)}{2}$$
 is zero if $\frac{\mathbf{R}'}{\mathbf{R}} = \frac{\mathbf{R}_2}{\mathbf{R}_1}$

(iii) Find CMRR of the amplifier if $\frac{R'}{R} \neq \frac{R_2}{R_1}$ (12)

Fig.2

Q.3 a. Draw and explain the circuit diagram of the voltage to current converter (Transconductance Amplifier). (8)
b. Explain the following non-ideal dc characteristics of real op-amp:

(i) Input bias current
(ii) Input offset current
(iii) Input offset voltage
(iv) Thermal drift (8)

Q.4 a. Design a circuit diagram of non-inverting integrator, also derive it's input output relation. (8)
b. Design a circuit diagram of zero crossing detector using op-amp as

(8)

comparator.

Code: AE54/AC54/AT54 Subject: LINEAR ICs & DIGITAL ELECTRONICS

- Q.5 a. Describe the pin diagram of 555 timer IC and give examples of its application. (4)
 - b. Design a circuit diagram of 3 bit R-2R Ladder DAC and also derive it's input output relation. (6)
 - c. Explain the working of Series Op-Amp voltage regulator with its circuit diagram.
 (6)

PART (B)				
Answer At least TWO	questions. Each	question	carries	16 marks.

- Q.6 a. What are alphanumeric codes? Give suitable example and numbers of bits in the code? (3)
 - b. What is the advantage and disadvantage of encoding a decimal number in BCD as compared with straight binary? (3)
 - c. Perform the following conversions: (i) $(1011.0011)_2 = (____)_{10}$ (ii) $(204.125)_{10} = (___)_{16}$ (iii) $(25.25)_{10} = (___)_2$ (iv) $(B4.C9)_{16} = (___)_{10}$ (v) $(5431.4)_8 = (___)_{16}$ (5×2)
- Q.7 a. What are the advantages of digital systems over analog systems? (4)
 - b. Minimize the given expression by using Boolean algebra, $Y = B(1+C)(B+\overline{B}C)(B+D)$ (4)
 - c. Design a combinational logic circuit with three input variables(say A, B, C) that produce a logic 1 output (say Y)when more than one input variables are logic 1.Draw the truth table and minimize expression using k-map.
 (8)
- Q.8 a. What is Multiplexer? Draw the logic diagram and functional table for the 4×1 MUX. (8)
 - b. Design a Full Adder Circuit using two Half adder circuits and other basic gate? (8)
- Q.9 a. Compare between Synchronous sequential circuits and asynchronous sequential circuits? (4)
 - b. Draw the circuit diagram of J-K flip-flop using NAND gate and draw the truth table and excitation table of J-K flip-flop. (6)
 - c. Explain and draw 4 bit Serial In / Parallel Out Shift Register, show the status of register at various clock pulses if data 10111 is fed into it. (6)