AE112 / DECEMBER 2014

(A) 1

(C) ∞

AMIETE - ET {NEW SCHEME}

Time: 3 Hours

Code: AE112

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

DECEMBER 2014

NOTE: There are 9 Questions in all.

- Ouestion 1 is compulsory and carries 20 marks. Answer to 0.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the O.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: 0.1

a. The period of a function $\cos\left[\frac{\pi}{4}(t-1)\right]$ is

(A)
$$\frac{1}{8}$$
 sec
(B) 8 sec
(C) 4 sec
(D) $\frac{1}{4}$ sec

- b. A single pulse has a
 - (A) single frequency component (B) continuous frequency component (D) spectrum of odd harmonics (C) spectrum of even harmonics
- c. If A_m is the fourier coefficient of x(t) (i.e. $x(t) \xleftarrow{FS} A_m$), then, for real x(t), the conjugate symmetry property is given by

(B) 0

(D) $\int \mathbf{x}(t) dt$

- $(\mathbf{B}) \ \mathbf{A}_{-m} = +\mathbf{A}_{m}$ $(\mathbf{A}) \quad \mathbf{A}_{-\mathbf{m}} = \mathbf{A}_{\mathbf{m}}$ (C) $A_{-m} = -A_{m}^{*}$ **(D)** $A_{-m} = -A_m$
- d. If $X(\omega)$ be the fourier transform of a function x(t), then X(0) is

1

Subject: SIGNALS AND SYSTEMS

Max. Marks: 100

 (2×10)

Subject: SIGNALS AND SYSTEMS

e. If $\delta(t)$ denotes a unit impulse, then the Laplace transform of $\frac{d^2\delta(t)}{dt^2}$ is

(A) 1 (B)
$$s^2$$

(C) s (D) s^{-2}

f. The Nyquist rate for a signal $x(t) = 10 \cos (50 \pi t) \cos^2(150\pi t)$ is

(C) 300samples/sec

(D) 350 samples/sec

g. The Z transform of a signal is given by $\frac{Z^{-1}(1-Z^{-4})}{4(1-Z^{-1})^2}$. Its final value is

(A) $\frac{1}{4}$	(B) 0
(C) 1.0	(D) ∞

h. Let $x(n) = \left(\frac{1}{2}\right)^n u(n)$, $y(n) = x^2(n)$ and $Y(e^{j\omega})$ be the fourier transform of y(n). Then $Y(e^{j\omega})$ is

(A)
$$\frac{1}{2}$$
 (B) 2
(C) 4 (D) 4/3

i. The given $y(n) = a^n u(-n-1)$, a<1 is:

(A) causal	(B) non-causal
(C) power signal	(D) none of these

j. Auto – correlation function of a random process is $e^{-2\alpha|\tau|}$. The power spectral density is

(A)
$$\frac{2\alpha}{\omega^2 + 2\alpha^2}$$

(B) $\frac{4\alpha}{\omega^2 + 4\alpha^2}$
(C) $\frac{\alpha}{\omega^2 + 2\alpha^2}$
(D) $\frac{2\alpha}{\omega^2 + 4\alpha^2}$

ROLL NO. _____

Code: AE112

Subject: SIGNALS AND SYSTEMS

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Discuss basic system properties with the help of two examples of each. (8) (i) causality (ii) stability	
	b.	Show that system represented by $y(t) = t x(t)$ is linear (4)	
	c.	Write short note on convolutional Integral. (4)	
Q.3	a.	Discuss the following properties of continuous time fourier series with the help of one example in each: (10) (i) Time shifting (ii) Multiplication	
	b.	Determine complex exponential fourier series representation of (i) $x(t) = \cos \omega_0 t$ (ii) $x(t) = \cos 3t + \sin 6t$ (6)	
Q.4	a.	Determine fourier transform of the signal. $x(t) = e^{-a t }$; $a > 0$ (6)	
	b.	State and prove the Parseval's Relation for continuous – Time fourier transform using suitable example. (10)	
Q.5	a.	Determine fourier transform of $X(e^{j\omega})$ of the unit step $x[n] = u[n]$ using accumulation property. (6)	
	b.	Explain the following properties of Discrete-time fourier Transform.(10)(i) Differentiation in frequency(ii) Duality(iii) Scaling(iv) Convolution in time domain	
Q.6	a.	State and explain Time Domain & frequency-Domain aspects of non-ideal filters. (8)	
	b.	Find Nyquist rate of the following signals: (8) (i) 10 sinc (5t) (ii) sinc ² (200t)	
Q.7	a.	Find Laplace Transform and its ROC of the following: (i) $x(t) = e^{-at}u(t)$ (ii) $x(t) = 3 e^{-2t}u(t) - 2e^{-t}u(t)$ (8)	

3

ROLL NO.

Code: AE112

Subject: SIGNALS AND SYSTEMS

(8)

(4×4)

b. Discuss following properties of Laplace Transform:
(i) Linearity
(ii) Time scaling
(iii) Frequency shifting(8)(iii) Frequency shifting(iv) Scaling

Q.8 a. Determine Z transform of the following: (8) (i) $x[n] = 7\left(\frac{1}{3}\right)^n u(n) - 6\left(\frac{1}{2}\right)^n u(n)$

(ii)
$$x[n] = \left(\frac{1}{3}\right)^n \sin\left(\frac{\pi}{4}n\right) u(n)$$

b. Show that the system represented by

$$H(Z) = \frac{1}{1 - \frac{1}{2}Z^{-1}} + \frac{1}{1 - 2Z^{-1}}, |Z| > 2 \text{ is causal.}$$

- **Q.9** Discuss the following:
 - (i) Correlation functions
 - (ii) Power spectral density (PSD)
 - (iii) Ergodic processes
 - (iv) Wide sense stationary (WSS) process