Code: AE110

Subject: CIRCUIT THEORY AND DESIGN

AMIETE – ET {NEW SCHEME}

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

- a. The equivalent resistance for the circuit shown in Fig.1 across the terminal 'A' and 'B' is
 - (A) 15Ω
 (B) 3Ω
 (C) 3/5Ω

b. The equivalent voltage source for the circuit shown in Fig.2 across terminal 'x' and 'y' can be represented as_____ resistance.

3Ω

- (A) 20V in series with 10Ω (B) 20V in series with 15Ω (C) 30V in series with 10Ω (D) 30V in series with 15Ω
- c. A capacitor with zero initial conditions at $t = 0^+$ act as a

(A) short circuit	(B) open circuit
(C) current source	(D) voltage source

- d. A unit ramp function when integrated yields
 - (A) unit parabolic function(C) unit impulse function
- (B) unit ramp function(D) unit step function

Code: AE110

Subject: CIRCUIT THEORY AND DESIGN

e. The Laplace transform of $e^{-at} f(t)$ is

(A)
$$-\frac{d}{ds}F(s)$$
 (B) $F(s + a)$
(C) $F(s)e^{-at}$ (D) $\frac{F(s)}{s+a}$

- f. The maximum power transfer through the load as shown in Fig.3
 - (A) 25W
 (B) 30.6W
 (C) 62.5W
 (D) 110W

g. The condition for reciprocity in ABCD-parameter is

$(\mathbf{A}) \ \mathbf{AD} \mathbf{-BC} = 1$	$(\mathbf{B}) \mathbf{A} \mathbf{D} = \mathbf{B} \mathbf{C}$
$(\mathbf{C}) \mathbf{A} = \mathbf{D}$	$(\mathbf{D}) \mathbf{A}\mathbf{C} - \mathbf{B}\mathbf{D} = 1$

- h. For a prototype high pass filter, the series element is
 - (A) Resistive
 (B) Inductive
 (C) Capacitive
 (D) Combination of inductance and capacitance
- i. The adjoining figure of synthesized LC circuit in Fig.4 represents.
 - (A) Cauer Form I(B) Foster Form I(C) Foster Form II(D) Cauer Form II

j. $H(s) = \frac{V(s)}{I(s)} = \frac{2(s+3)}{(s+2)^3}$ when i(t) is a unit step function. The value of v(t) in the steady state is given by

(A) 3/2	(B) 3/4
(C) 1	(D) 0

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Determine Vx in the circuit shown in Fig.5

- b. For the circuit shown in Fig.6, obtain the value of current through 2Ω resistor.
 - (8)

Q.3 a. In the network shown in Fig.7, if the switch k is opened at t = 0, then find the following quantities at t = 0⁺ (i) $v_1 \& v_2$ (ii) $\frac{dv_1}{dt} \& \frac{dv_2}{dt}$. (8)

b. For the circuit shown in Fig.8, find the voltage labelled v at $t = 200 \mu$ sec. (8)

- Q.4a. Obtain the Laplace transform of
(i) The delayed step, function k[u(t-a)].(4)(ii) The ramp function k t u(t).(4)
 - b. Consider the R-L circuit with $R = 4\Omega$ and L = 1H (8) excited by a 48V dc source as shown in Fig.9. Assume the initial current through the inductor is 3A. Using Laplace transform method, determine the current i(t); at t ≥ 0 . Also draw the s-Domain representation of the circuit.

Q.5

ROLL NO.

Code: AE110

Subject: CIRCUIT THEORY AND DESIGN

- Derive the condition for maximum power transfer to take place at a load b. impedance $Z_L = R_L + jX_L$, when the source is an ac source having an internal impedance of $Z_{in} = R + iX$. (8)
- **Q.6** a. Find the transfer impedance function

- b. Check whether the given polynomial P(s) is Hurwitz or not. $P(s) = s^4 + s^3 + 2s^2 + 4s + 1$
- **Q.7** a. Obtain the condition for reciprocity and symmetry in terms of h-parameters.(8)
 - b. Calculate the Z Parameters of the network shown in Fig.12. Determine whether the network is symmetrical or not? (8)

(8)

An impedance function given by $Z(s) = \frac{s(s+2)(s+5)}{(s+1)(s+4)}$ find the R-L repre-**Q.8** (16)

setion of

(i) FOSTER I and II forms. (ii) CAUER I and II forms.

- a. Find the driving point impedance of the Q.9 network shown in Fig.13. Find the poles and zeros of the network and locate them in s-plane. (8)
 - b. If a T-section of a constant k- low pass filter has series inductance 85 mH and shunt capacitance of 0.025µF, calculate its cut off frequency and the nominal design impedance R_o. Design an equivalent π -section too. (8)

