ROLL NO. ____

Code: AE104

Subject: LINEAR ICs & DIGITAL ELECTRONICS

AMIETE – ET {NEW SCHEME}

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions selecting at least TWO questions from each part, each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The bandwidth of an ideal Op-Amp is

(A) Zero	(B)	Infinity
(C) Small	(D)	Large

b. The typical value of CMRR for 741C Op-Amp is

(A)	20 dB	(B) 40 dB
(C)	60 dB	(D) 90 dB

c. Operational Transconductance Amplifiers (OTAs) are used in

(A)	Integrators	(B) Differentiators
(C)	Current switches	(D) Logarithmic Amplifiers

d. The time period "T" for which the output of Monostable Multivibrator using op-amp goes low is given by

(A) 0.69RC	(B) 2.01RC
(C) 1.69RC	(D) 1.09RC

e. The fastest and most expensive Analog to Digital Conversion Technique is

(A) Counter Type	(B)	Parallel Comparator type
(C) Successive Approximation	Type (D)	Dual Slope Type

f. The code that is used for transfer of alphanumeric information between a computer and external device is

A) ASCII Code	(B) BCD Code
C) Gray Code	(D) Excess -3 Code

Subject: LINEAR ICs & DIGITAL ELECTRONICS

g. The output expression for Y in the circuit shown below in Fig.1 is

Fig.1

(A) $A \bullet B + C$	(B) $\overline{A} + \overline{B} + C$
(C) $\overline{A} + B + \overline{C}$	(D) $\overline{A} + \overline{B} + \overline{C}$

h. The simplified expression for $x = (\overline{A} + B)(A + B + D)\overline{D}$ is

(A) $x = \overline{B}D$	(B) $x = B\overline{D}$
(C) $x = \left(\overline{A} + \overline{D}\right)$	$(\mathbf{D}) \ x = (A + D)$

i. $(592)_{16} - (3A5)_{16} = ($)₁₆

(A) 1ED	(B) 1A7
(C) 1B7	(D) 1C3

j. The output frequency of a decade counter which is clocked from a 50 KHz signal is

(A) 25 KHz	(B) 12.5	KHz
(C) 6.25 KHz	(D) 5 KH	Ηz

PART (A)

Answer at least TWO Questions. Each question carries 16 marks.

Q.2	a.	Briefly define monolithic, thin film, thick film and hybrid integrated circuit	rs. (8)
	b.	Draw the equivalent circuit, block schematic of an Op-Amp, and list characteristics of an ideal Op-Amp.	the (8)
Q.3	a.	Explain Op-Amp circuit bandwidth and slew rate.	(8)
	b.	Draw the circuit of inverting summing amplifier using Op-Amp and derive expression for its output.	e the (8)
Q.4	a.	Explain the working of Sample and Hold circuit using Op-Amp with the of waveforms.	help (8)
	b.	Explain the working of Schmitt Trigger circuit using Op-Amp.	(8)
Q.5	a.	Explain the working of Astable Multivibrator using Op-Amp.	(8)
	b.	Explain the working of Parallel comparator type A/D Converter.	(8)

ROLL NO. _

Subject: LINEAR ICs & DIGITAL ELECTRONICS

PART (B)

Answer at least TWO Questions. Each question carries 16 marks.

- Q.6 a. Describe the relative advantages of parallel and serial transmission of binary data. (6)
 - b. Perform the following conversions; (i) $(100101)_2 = ($)₁₀ (ii) $(372)_8 = ($)₁₀ (iii) $(5431)_8 = ($)₂ (iv) $(2AF)_{16} = ($)₁₀ (v) $(3A6)_{16} = ($)₂ (10)
- Q.7 a. Determine the output expression for the circuit shown in Fig.2 and find the output, if A=0, B=1, C=1 and D=1. (8)

- b. Simplify the expression $x = \overline{ABC} + \overline{ABC} + ABC + A\overline{BC} + A\overline{BC}$ using Karnaugh map. (8)
- Q.8 a. Draw the block diagram of a 5-bit parallel Adder circuit using full-adders and explain.(8)
 - b. What is a Multiplexer? Explain with a diagram the working of a 4-input multiplexer. (8)
- Q.9 a. Explain the working of a clocked JK flip flop with neat diagram and waveforms. (8)
 - b. Draw the diagram of a 4-bit Ring-Counter and explain its working with waveforms. (8)