ROLL NO.

Code: AC72/AT72

Subject: LINUX INTERNALS

AMIETE – CS/IT

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions, answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. Which directories contain the central sections of the kernel?

(A) kernel/	(B) arch/i386/kernel/
(C) Both (A) & (B)	(D) None of these

b. _____ call is used to create a bootable LINUX kernel.

(A) # make depend	(B) # make oldconfig
(C) # make drivers	(D) # make boot

c. _____ variable holds the time the process has spent in System Mode.

(A) utime	(B) cstime
(C) stime	(D) cutime

d. Which command is used to set limits on file size?

(A) fsize	(B) flimit
(C) ulimit	(D) usize

e. _____ function is used to map the device to user address space.

(A) lseek	(B) mmap
(C) readdir	(D) fsync

- f. Which of the following is true about int brk(void **addr*)?
 - (A) It sets the end of the data segment to the value specified by *addr*, when that value is reasonable, the system has enough memory, and the process does not exceed its maximum data size.
 - (**B**) It change the location of the program break, which defines the end of the process's data segment.
 - (C) The return value described above for *brk()* is the behavior provided by the glibc wrapper function for the Linux *brk()* system call.
 - (**D**) All of these

g. Pid of init process is _____.

(A) 0	(B) 1
(C) 32767	(D) None of these

h. Locks can be removed using

(A) F_UNLCK	(B) F_RDLCK
(C) F_WRLCK	(D) None of these

i. Which command is used to check file system usage in a system?

(A)	mount	(B) df
(C)	du	(D) dd

j. The structure proc_root_inode_operations provides _____.

(A) the component readdir in the form of the proc_readroot() function
(B) the component lookup as the proc_lookup function
(C) Both (A) & (B)
(D) None of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain any 5 main characteristics of LINUX.	(10)
	b.	Classify drivers/ directory according to their subdirectories.	(6)
Q.3	a.	Describe the states within a process with the help of a neat diagram.	(8)
	b.	Write and explain the algorithm for the booting of a LINUX system.	(8)
Q.4	a.	Explain with a neat diagram, the Linear address conversion in the archit independent memory model.	tecture- (6)
	b.	What do you understand by static and dynamic memory allocation in the segment? Explain.	e kernel (10)
Q.5	a.	Show the implementation of synchronization in the LINUX kernel.	(10)
	b.	How is inter-process communication achieved in Linux? Explain.	(6)
Q.6	a.	Write a note on any four file operations in LINUX.	(8)
	b.	Explain, how the Virtual File System interacts with a file implementation?	system (8)

ROLL NO. __

Code: AC72/AT72

Q.7	a.	How do large volumes of data get transported continuously to or from a d Explain.	levice? (8)
	b.	Write a note on read() and write() functions.	(8)
Q.8	a.	Explain socket structure with the help of a block diagram. Show relations the socket with its substructure.	ship of (6)
	b.	Write notes on following protocols- ARP and IP.	(10)
Q.9	a.	In order to implement SMP in Linux kernel, what changes have to be Explain.	made? (8)
	b.	Describe the functions of create_module, init_module and delete_module.	(8)