\qquad

AMIETE - CS

Time: 3 Hours
DECEMBER 2014
Max. Marks: 100
please write your roll no. at the space provided on each page IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.
NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q. 1 Choose the correct or the best alternative in the following:

a. In Context free Grammar, Left hand side of a production consists of
(A) One non-terminal
(B) More than one non- terminal
(C) One terminal
(D) Terminals and non-terminals
b. For the set $\mathrm{P}(\mathrm{P}(\varnothing))$, the number of elements are:
(A) 16
(B) 2
(C) 4
(D) 1
c. The language defined by the regular expression $r_{1} r_{2}$ is
(A) $L\left(r_{1}\right) L\left(r_{2}\right)$
(B) $L\left(r_{1}\right) \cup L\left(r_{2}\right)$
(C) $L\left(r_{1}\right)-L\left(r_{2}\right)$
(D) None of these
d. The language of all words (made up of 0 's and 1 's) with at least two 0 's can be described by the regular expression.
(A) $0(0+1) 0(0+1)(0+1) 01$
(B) $(0+1) 010(0+1)$
(C) $1010(0+1)$
(D) All of these
e. Which of the following grammars are not ambiguous?
(i) $S \rightarrow S \mid S, S \rightarrow a$
(ii) $S \rightarrow a \operatorname{aAb} a b S b$
$A \rightarrow a A A b b S$
(iii) $S \rightarrow a B \mid a b$
$A \rightarrow a A B \mid a$
$B \rightarrow A B b \mid b$
(A) (i) only
(B) (i) and (iii)
(C) (i) and (ii)
(D) All of these
f. Data structure used in a Push down Automation (PDA) is
(A) Linked List
(B) Queue
(C) Stack
(D) Array
g. Which of the following Statements are true?
(i) Every context-free language is context-sensitive.
(ii) There exists a context-sensitive language that is not context-free.
(iii) Every context-sensitive language need not be recursive.
(A) (i) and (ii)
(B) (ii) and (iii)
(C) All statements are true
(D) None of these
h. A parse tree for a string in $L(G)$ is a tree where
(A) The root is the start symbol for G
(B) The leaf nodes are the terminal symbols of G
(C) The children of a node T (from left to right) correspond to the symbols on the right hand side of some production for T in G .
(D) All of these
i. There are \qquad tuples in Turing machine.
(A) 4
(B) 5
(C) 6
(D) 7
j. The following problem(s) are called decidable problem(s).
(A) The two Finite Automata's are equivalent
(B) The two regular expressions define the same language
(C) Both (A) and (B)
(D) None of these

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Given $A=\{1,3,5,6\}$ Determine $P(A)$ (Power set of A).
b. Illustrate the terms- Language, Concatenation of Language, String and Concatenation of String. Explain each term with suitable example.
c. Use mathematical induction to show that $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$
Q. 3 a. What are the Applications of Finite Automata? Also Define DFA and NFA.
b. Construct a DFA to accept strings of 0's and 1 's having a sub string 00 .
c. Obtain the equivalent DFA for the given NFA, $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\}, \delta, q_{0}\right.$, $\left\{\mathrm{q}_{1}\right\}$) with transition table as given below.

q_{0}	a	b
	$\left\{\mathrm{q}_{1}, \mathrm{q}_{2}\right\}$	\varnothing
	\varnothing	\{ q_{2} \}
q_{1}	\varnothing	\{ q_{2} \}
q_{2}		

Q. 4 a. Define ambiguous grammar. Show that which of the following regular expressions are ambiguous or not?
(i) $1101^{*} \cup 11101 \cup 11001^{*} \cup 1$
(ii) a((ab)*cd) $* \cup$ a(ababcb*)*a*
b. Find the languages accepted by the following automata:
(8)
(i)

(ii)

Q. 5 a. Define Context free grammar (CFG).Explain the language (in English) generated by the following Context free grammar:

$$
\begin{gathered}
\mathrm{S} \rightarrow \mathrm{XY} \\
\mathrm{X} \rightarrow 0 \mathrm{X}|1 \mathrm{X}| \Lambda \\
\mathrm{Y} \rightarrow 100|101| 110 \mid 111
\end{gathered}
$$

b. Write Short Notes on the following with suitable example:
(i) Right Linear Grammar
(ii) Left Linear Grammar
(iii) Parse Trees
Q. 6 a. Given $L=\left\{0^{m} 1^{n} \mid m<n\right\}$. Construct
(i) a context-free grammar that accepts L
(ii) a Pushdown automata(PDA) accepting L by empty store
(iii) a Pushdown automata(PDA) accepting L by final state
b. What are the differences between the Non- Deterministic Pushdown automata (NPDA) and Deterministic Pushdown automata (DPDA)?
Q. 7 a. State the Pumping Lemma theorem. Prove that the language $L=\left\{a^{n} b^{n}\right\}, n \in \mathrm{~N}$ is non-regular using the pumping lemma.
b. Explain the following:
(i) Normal forms for Context free Grammars
(ii) Conversion from PDA to CFG
Q. 8 a. Explain problems that Computers cannot solve. Use an example to illustrate.
b. Define Turing machine. Construct a Turing machine to accept the language that adds two given integers.
Q. 9 a. Show that the Post Correspondence Problem (PCP) is decidable if the alphabet is unary, i.e., $\Sigma=\{1\}$.
b. Prove that if a Language L_{1} is recursive and L_{2} is recursively enumerable, then $\mathrm{L}_{2}-\mathrm{L}_{1}$ is necessarily recursively enumerable.

