ROLL NO.

Code: AC68 Subject: FINITE AUTOMATA & FORMAL LANGUAGES

# AMIETE – CS

Time: 3 Hours

# **DECEMBER 2014**

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

### Q.1 Choose the correct or the best alternative in the following:

 $(2 \times 10)$ 

- a. In Context free Grammar, Left hand side of a production consists of
  - (A) One non-terminal
  - (B) More than one non- terminal
  - (C) One terminal
  - (D) Terminals and non-terminals
- b. For the set  $P(P(\phi))$ , the number of elements are:

| ( <b>A</b> ) 16 | <b>(B)</b> 2   |
|-----------------|----------------|
| ( <b>C</b> ) 4  | ( <b>D</b> ) 1 |

c. The language defined by the regular expression  $r_1 r_2$  is

(A)  $L(r_1)L(r_2)$ (B)  $L(r_1) \cup L(r_2)$ (C)  $L(r_1) - L(r_2)$ (D) None of these

d. The language of all words (made up of 0's and 1's) with at least two 0's can be described by the regular expression.

(A) 0(0+1)0(0+1)(0+1)01
(B) (0+1)010(0+1)
(C) 1010(0+1)
(D) All of these

## Code: AC68 Subject: FINITE AUTOMATA & FORMAL LANGUAGES

- e. Which of the following grammars are not ambiguous?
  - (i)  $S \rightarrow S | S, S \rightarrow a$ (ii)  $S \rightarrow a \ aAb \ abSb$   $A \rightarrow aAAb \ bS$ (iii)  $S \rightarrow aB|ab$   $A \rightarrow aAB |a$  $B \rightarrow ABb|b$

| ( <b>A</b> ) (i) only     | <b>(B)</b> (i) and (iii)  |
|---------------------------|---------------------------|
| ( <b>C</b> ) (i) and (ii) | ( <b>D</b> ) All of these |

f. Data structure used in a Push down Automation (PDA) is

| (A) Linked List | ( <b>B</b> ) Queue |
|-----------------|--------------------|
| (C) Stack       | <b>(D)</b> Array   |

g. Which of the following Statements are true?

- (i) Every context-free language is context-sensitive.
- (ii) There exists a context-sensitive language that is not context-free.
- (iii) Every context-sensitive language need not be recursive.

| <b>(A)</b> | (i) and (ii)            | <b>(B)</b> (ii) and (iii)  |
|------------|-------------------------|----------------------------|
| <b>(C)</b> | All statements are true | ( <b>D</b> ) None of these |

- h. A parse tree for a string in L(G) is a tree where
  - (A) The root is the start symbol for G
  - (B) The leaf nodes are the terminal symbols of G
  - (C) The children of a node T (from left to right) correspond to the symbols on the right hand side of some production for T in G.
  - (**D**) All of these
- i. There are \_\_\_\_\_\_ tuples in Turing machine.

| ( <b>A</b> ) 4 | <b>(B)</b> 5   |
|----------------|----------------|
| ( <b>C</b> ) 6 | ( <b>D</b> ) 7 |

- j. The following problem(s) are called decidable problem(s).
  - (A) The two Finite Automata's are equivalent
  - (B) The two regular expressions define the same language
  - (**C**) Both (**A**) and (**B**)
  - (**D**) None of these

ROLL NO.

## Code: AC68 Subject: FINITE AUTOMATA & FORMAL LANGUAGES

#### Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

**Q.2** a. Given 
$$A = \{1, 3, 5, 6\}$$
 Determine P (A) (Power set of A). (2)

b. Illustrate the terms- Language, Concatenation of Language, String and Concatenation of String. Explain each term with suitable example. (6)

c. Use mathematical induction to show that  $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$  (8)

- Q.3 a. What are the Applications of Finite Automata? Also Define DFA and NFA. (4)
  - b. Construct a DFA to accept strings of 0's and 1's having a sub string 00. (4)
  - c. Obtain the equivalent DFA for the given NFA,  $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_1\})$  with transition table as given below. (8)

|            | а              | b       |
|------------|----------------|---------|
|            | $\{q_1, q_2\}$ | Ø       |
| $q_{o}$    |                |         |
|            | Ø              | ${q_2}$ |
| $q_1$      | a              | (a.)    |
| (L)        | Ø              | 1423    |
| <b>Y</b> 2 |                |         |

- Q.4 a. Define ambiguous grammar. Show that which of the following regular expressions are ambiguous or not? (8)
  (i) 1101\*∪11101 ∪ 11001\*∪1
  (ii) a((ab)\*cd) \* ∪ a(ababcb\*)\*a\*
  - b. Find the languages accepted by the following automata: (8) (i)



## Code: AC68 Subject: FINITE AUTOMATA & FORMAL LANGUAGES



- Q.5 a. Define Context free grammar (CFG).Explain the language (in English) generated by the following Context free grammar: (3+4)  $S \rightarrow XY$   $X \rightarrow 0X |1X|\Lambda$ 
  - $\begin{array}{c} X \rightarrow 0X | 1X | \\ Y \rightarrow 100 | 101 | 110 | 111 \end{array}$
  - b. Write Short Notes on the following with suitable example: (3×3)
    (i) Right Linear Grammar
    (ii) Left Linear Grammar
    (iii) Parse Trees
- **Q.6** a. Given  $L = \{0^m 1^n | m < n\}$ . Construct (4×3) (i) a context-free grammar that accepts L(ii) a Pushdown automata(PDA) accepting L by empty store (iii) a Pushdown automata(PDA) accepting L by final state
  - b. What are the differences between the Non- Deterministic Pushdown automata (NPDA) and Deterministic Pushdown automata (DPDA)? (4)
- Q.7 a. State the Pumping Lemma theorem. Prove that the language  $L = \{a^n b^n\}, n \in \mathbb{N}$  is non-regular using the pumping lemma. (8)
  - b. Explain the following: (4+4)
    (i) Normal forms for Context free Grammars
    (ii) Conversion from PDA to CFG

**Q.8** a. Explain problems that Computers cannot solve. Use an example to illustrate.

- b. Define Turing machine. Construct a Turing machine to accept the language that adds two given integers. (10)
- **Q.9** a. Show that the Post Correspondence Problem (PCP) is decidable if the alphabet is unary, i.e.,  $\Sigma = \{1\}$ . (8)
  - b. Prove that if a Language  $L_1$  is recursive and  $L_2$  is recursively enumerable, then  $L_2 L_1$  is necessarily recursively enumerable. (8)