ROLL NO.

Code: AC65

Subject: DISCRETE STRUCTURES

AMIETE – CS

Time: 3 Hours

DECEMBER 2014

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. If S and T are two sets, then $|(S \cup T)|$ is:

(A) $ S + T $	(B) $ S + T - S \cap T $
$(\mathbf{C}) (\mathbf{S} \cup \mathbf{T}) - \mathbf{S} \cap \mathbf{T} $	(D) None of these

b. The total number of words formed with n distinct letters are:

(A) n	(B) n.(n−1)
(C) $n.(n-1).(n-2)3.2.1$	(D) $n.(n-1)/2$

c. Given $A = \{\{a\}, a, \{a, b\}\}$. Which of the following is true:

(A) $a \subseteq A$	(B) $b \in A$
(C) $\{a,b\} \subseteq A$	(D) $\{a,b\} \in A$

d. Let Q be the set of rational numbers and define a*b = a + b - ab. Structure $\langle Q, * \rangle$ is:

(A) Semigroup	(B) Group
(C) Monoid	(D) None of these

e. In how many ways can 3 boys and 2 girls sit in a row:

(A) 48	(B) 120
(C) 6	(D) 24

f. The inverse of $p \rightarrow (p \lor \neg q)$ is:

(A)	$\sim p \rightarrow (\sim p \land q)$	(B) $p \land (p \land \sim q)$
(C)	$\sim (p \lor \sim q) \rightarrow p$	(D) $p \lor (p \leftrightarrow q)$

g. Let $f: R \rightarrow R$ be defined by $f(x) = x^2 + 1$, then $f^{-1}(5)$ is:

(A) $\{2, 3\}$	(B) {-2, 2}
(C) {3, 3}	(D) {-3, 3}

				ROLL NO	
Cod	e: A	AC65	Subject: DIS	CRETE STRUCTU	URES
	h.	Let I^+ be the set of positive integer $2x \le y-1$. Then which ordered pair		ation on I^+ defined by γ	xRy iff
		(A) (2, 2) (C) (3, 2)	(B) (3, 9) (D) (9, 3)		
	i. The set of all positive rational numbers forms an abelian group under the composition defined by a $* b = ab / 2$. Identity of this group is:				
		(A) 1 (C) 2	(B) 0 (D) None of th	iese	
	j.	$(P \rightarrow Q) \land P$ is logically equivalent	t to:		
		(A) P (C) $P \rightarrow Q$	$\begin{array}{l} \textbf{(B)} \ Q \\ \textbf{(D)} \ P \ \land \ Q \end{array}$		
		Answer any FIVE Question Each question c	ns out of EIGHT arries 16 marks.	-	
Q.2	a.	Let A = { Φ , b}, construct the follo (i) A - Φ (ii) { Φ } - A (iii) A \cap P(A) (iv) Φ - A	owing sets:		(8)
	b.	Prove that (i) $(A \cap B) \cup (A \cap \neg B)$ (ii) $A \cap (\neg A \cup B) = A \cap$			(8)
Q.3	a.	 (i) Given the value of p → q is the statement tautology? (p ∧ (p → q)) → q 	rue. Determine the	e value of $\sim p \lor (p \leftrightarrow q)$). (8)
	b.	Define logical equivalence. Const (P \lor Q) $\land \sim$ (P \land Q) and (P $\land \sim$ Q) Also deduce that whether the above) \vee (~P \vee Q).		(8)
Q.4	a.	Define quantifiers. Negate the sta For all real x, if $x > 3$, the	2		(8)
	b.	Define the validity of the followir "If Ram runs for office, he will b run for office. Either Ram will a Ram cannot go to London. Thus F	be selected. If Ra ttend the meeting	g or he will go to Lond	
Q.5	a.	Define Cartesian product on set $\{a, b, c\}$ and $Z = \{c, d\}$, find (X×Y)	_	en sets $X = \{1, 2\},\$	Y = (8)

Code: AC65

(8)

(8)

b. Let a and b be positive integers, and suppose A is defined recursively as follows:

 $A(a,b) = \begin{cases} 0 & , if \ a < b \\ A(a-b,b) + 1, if \ b \le a \\ (i) \ \text{Find:} \ (i) \ A(2,5), \ (ii) \ A(12,5). \\ (ii) \ \text{What does this function } A \ do? \ \text{Find } A \ (5861,7). \end{cases}$ (8)

- **Q.6** a. Let R be binary relation on the set of all strings of 0s and 1s such that $R = \{(a, b) \mid a \text{ and } b \text{ are strings that have same number of 0s}\}$:
 - (i) Is R reflexive?
 - (ii) Is R symmetric?
 - (iii) Is R transitive?
 - (iv) Is R a partial order relation?
 - b. Prove that if a and b are elements in a bounded distributive lattice and if a has a compliment a', then

(i)
$$a \lor (a' \land b) = a \lor b$$

(ii) $a \land (a' \lor b) = a \land b$
(8)

- **Q.7** a. Let $f: R \to R$ be a function defined as, f(x) = |x|. Show that f is neither one-one nor onto function. (8)
 - b. Define composite functions. Let $f : R \to R$ be a function given as, $f(x) = 2 \cdot x^2$ and $g : R^+ \to R^+$ be given as $g(x) = \sqrt{x}$, where R^+ is the set of non-negative real numbers. Compute fog(x) and gof(x).
- Q.8 a. If Z_n denotes the set of integers {0, 1, 2, ..., n-1} and * be binary operation on Z_n such that a*b = the remainder of ab divided by n,
 (i) Construct the table for the operation * for n = 4
 (ii) Show that (Z_n, *) is a semi-group for n = 4.
 - b. Let (R, +) be the additive group of real numbers and (R^+, \times) be a multiplicative group of positive real numbers. Prove that $f : R \to R^+$, defined by $f(x) = e^x$, for all x in R is an isomorphism from (R, +) to (R^+, \times) . (8)

Q.9 a. The generating function of an encoding function $E: Z_2^3 \to Z_2^6$ is given by

 $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

(i) Find the code words assigned to 110 and 010.
(ii)Obtain associated parity-check matrix.
(iii)Hence decode the received word 110110.

b. Let n be an integer satisfying n > 1. Then prove that the ring Z_n of congruence classes of integer modulo n is an integral domain if and only if n is a prime number. (8)