ROLL NO. _

Code: DE65

Subject: CONTROL ENGINEERING

Diplete – Et

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

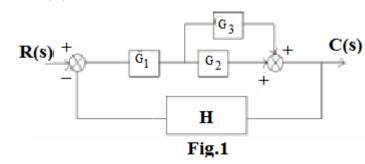
- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The damping ratio of a system having the characteristic equation $s^{2}+2s+8=0$ is

(A) 0.353	(B) 0.330
(C) 0.300	(D) 0.250

b. The laplace transform of e $^{-2t}$ sin 2 ω t is


(A) $\frac{2\omega}{(s+2)^2+2\omega^2}$	(B) $\frac{2s}{(s-2)^2+4\omega^2}$
(C) $\frac{2\omega}{(s+2)^2+4\omega^2}$	$(\mathbf{D}) \ \frac{2\omega}{\left(s+2\right)^2 - 2\omega^2}$

- c. Stability of open loop is
 - (A) greater than closed loop(B) lesser than closed loop(C) equals to closed loop(D) none of these
- d. The impulse response of the standard second order system can be obtained from its unit step response by

(A) integrating(C) inverse laplace of function

(B) a derivating(D) transfer function

e. The transfer function of the block diagram Fig.1 is

Code: DE65

Subject: CONTROL ENGINEERING

$(\mathbf{A}) - \frac{\mathbf{G}_2(\mathbf{G}_1 + \mathbf{G}_3)}{\mathbf{G}_2(\mathbf{G}_1 + \mathbf{G}_3)}$	(B) $- G_1(G_2 + G_3)$
$(\mathbf{A}) \overline{1 + G_1 G_2 H + G_1 G_3 H}$	(B) $\overline{1+G_1G_2H+G_1G_3H}$
(C) $\frac{G_1(G_2-G_3)}{G_1(G_2-G_3)}$	(D) $\frac{G_1(G_2 + G_3)}{1 + G_1H + G_3H}$
$\frac{1+G_1G_2H+G_1G_3H}{1+G_1G_3H}$	$(L) 1 + G_1 H + G_3 H$

f. For a standard second-order system described by $s^2 + 2\zeta \omega_n s + \omega_n^2$, the term $1/\zeta \omega_n$ indicates

(A) time-constant	(B) damping factor
(C) natural frequency	(D) none of these

- g. Lead-lag compensation is needed for
 - (A) transient response improvement(B) steady state response improvement(C) both transient and steady state response improvement
 - (**D**) none of these
- h. The input to a controller is

(A) sensed signal	(B) desired variable value
(C) error signal	(D) servo-signal

i. If the Nyquist plot of the loop transfer function G(s) H(s) of a closed-loop system encloses the (-1, j0) point in the G(s) H(s) plane, the gain margin of the system is

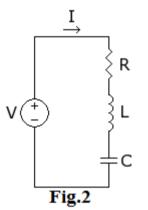
(A) zero	(B) greater than zero
(C) less than zero	(D) infinity

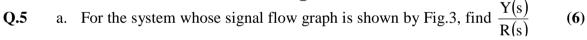
j. The principles of homogeneity and superposition are applied to

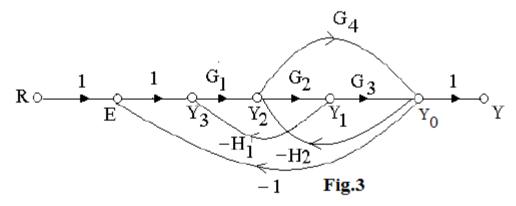
(A) linear time variant system(B) non-linear time variant system(D) non-linear time invariant systems

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Define control system. When is a control system said to be robust? (8)
b. Define the following terms in respect of feedback control system: (i) Feed forward element (ii) Control signal (iii) Feedback element (iv) Actuating signal

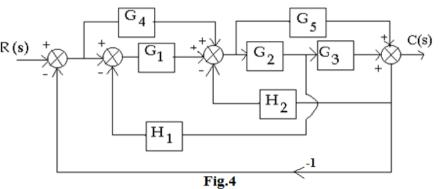

ROLL NO. _


(6)


Code: DE65

Subject: CONTROL ENGINEERING

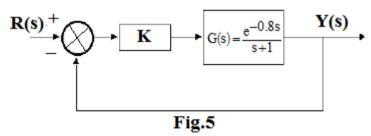
- Q.3 a. Define the transfer function of a linear time-invariant system in terms of its differential equation model. What is the characteristic equation of the system?(8)
 - b. Obtain the Unit-step response of a unity-feedback whose open-loop transfer function is $G(s) = \frac{5(s+20)}{s(s+4.59)(s^2+3.14s+16.35)}$ (8)
- Q.4 a. Explain the procedure to be followed when in the Routh's array all the elements of a row corresponding to S⁴ are zeros. (4)
 - b. Write short note on compensation.
 - c. Obtain the transfer function for RLC circuit shown in Fig.2 below. (6)



Code: DE65

Subject: CONTROL ENGINEERING

b. Determine the transfer function $\frac{C(s)}{R(s)}$ for the block diagram shown in Fig.4 by


first drawing its signal flow graph and then using the Mason's gain formula. (10)

- **Q.6** a. The transfer functions for a single-loop non-unity-feedback control system are given as $G(s) = \frac{1}{s^2 + s + 2}$ and $H(s) = \frac{1}{s+1}$. Find the steady-state errors due to a unit-step input, a unit-ramp input and a parabolic input. (8)
 - b. Define sensitivity. Discuss the sensitivity of transfer function with different parameters. (8)

Q.7 Construct root locus and comment on the stability of a unity-feedback control system having the open-loop transfer function $G(s) = \frac{10}{s(s-1)(2s+3)}$ (16)

- **Q.8** a. Explain the properties of polar plots.
 - b. Use the Nyquist criterion to determine the range of values of K>0 for the stability of the system in Fig.5. (10)

- **Q.9** A unity-feedback system has open-loop transfer function $G(s) = \frac{4}{s(s+1)(s+2)}$
 - (i) Using Bode plots of G(jw), determine the phase margin of the system.
 - (ii) How should the gain be adjusted so that phase margin is 50° ? (16)

(6)