ROLL NO.

Code: AE77/AC77

Subject: DIGITAL SIGNAL PROCESSING

AMIETE - ET/CS

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. One to one mapping is obtained using

(A) Impulse invariance mapping	(B) Bilinear mapping
(C) Both (A) and (B)	(D) None of these

- b. Delay distortion
 - (A) shift the sequence in frequency(B) shift the sequence in phase(C) shift the sequence in time(D) shift the sequence in magnitude
- c. The direct Form II realization requires _____ memory than the Direct Form -I realization.

(B) aliasing

(D) recovery without aliasing

(B) linear convolution

(D) Both **(B)** and **(C)**

(B) high pass filter

(**D**) All of these

(A) more	(B) less
(C) same	(D) can not decide from given data

- d. If the continuous time signal is $x_c(t) = cos(16000\pi t)$ with sampling period T = 1/6000, will result in
 - (A) inequality(C) interpolation
- e. In overlap add method ______ is performed.
 - (A) circular convolution(C) Zero padding
- f. Window methods are used for
 - (A) low pass filter(C) Linear-phase low pass filter
- g. For DIT and DIF algorithms
 - (A) They involves same number of computations(B) They requires bit reversing

ROL	L NO).	

Code: AE7	7/AC77 Subject:	DIGITAL SIGNAL PROCESSING	
(C) The (D) All	y require multiplication of pl of these	nase factor	
h. Time d	ependent Fourier Transform	can be analyzed using	
(A) Ove (C) Bo	erlap save method th (A) & (B)	(B) Overlap add method(D) None of these	
i. Estimat	i. Estimation of power density spectrum is called		
(A) auto (C) per	o-correlation iodogram	(B) randomization(D) spectrogram	
j. An idea input si	al Hilbert transformer is gnal	that imparts a phase shift on the	
(A) an a (C) a lo	all-pass filter, 90° w-pass filter, 90°	 (B) an all-pass filter, - 90° (D) a low-pass filter, - 90°. 	

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Define Quantization. Derive the signal-to-quantization noise ratio for sinusoidal signals. (8)
 - b. In the system shown in Fig.1, $X_c(j\Omega)$ and $H(e^{j\omega})$ are as shown (8)

and $1/T_1 = 30000$, $1/T_2 = 10000$ respectively.

Sketch and label the Fourier transforms of $y_d[n]$ and $y_c(t)$.

2

(2)

Code: AE77/AC77

- **Q.3** a. Consider the LTI system with input x[n] and output y[n], which are related through the difference equation: y[n] 5/2 y[n-1] + y[n-2] = x[n]
 - (i) Obtain the system function and its ROC (4)
 - (ii) Draw its pole-zero plot
 - (iii) Comment on the causality and stability of this system (2)
 - b. A discrete-time causal LTI system has the system function

$$H(z) = \frac{(1+0.2z^{-1})(1-9z^{-2})}{(1+0.81z^{-2})}$$

Find expression for a minimum-phase system $H_1(z)$ and an all-pass system $H_{ap}(z)$ such that $H(z) = H_1(z) H_{ap}(z)$. (8)

Q.4 a. Obtain the parallel-form structure of the given H(z) for first-order and second order systems.

$$H(z) = \frac{\left(1 + 2z^{-1} + z^{-2}\right)}{\left(1 - 0.75z^{-1} + 0.125z^{-2}\right)}$$
(8)

- b. Describe the signal flow graph representation of linear constant coefficient difference equations. (8)
- Q.5 a. With an example, design a differentiator using Kaiser Window concept. (8)
 - b. Discuss the Parks- McClellan algorithm for type I low pass filter. (8)
- Q.6 a. Discuss and prove the following properties of Discrete Fourier Transform. (8) (i) Duality (ii) Symmetry
 - b. Perform the Circular Convolution of the two sequences $x_1(n) = \{\underline{2}, 1, 2, 1\}$ and $x_2(n) = \{\underline{1}, 2, 3, 4\}$. (8)
- **Q.7** a. For x(n) = (1,1,-1,-1) use 4-point DIT, algorithm for FFT and cross check the result using DFT. (8)
 - b. Write a short note on implementation of DFT using "The Chirp Transform Algorithm." (8)
- Q.8 a. Discuss the effect of windowing on Fourier analysis of sinusoidal signals. (8)

ROLL NO.

Code: AE77/AC77 Subject: DIGITAL SIGNAL PROCESSING

- b. Discuss the time-dependent Fourier transform with a suitable example. (8)
- Q.9 a. Explain usages of Hilbert Transform for band pass signals. (8)
 - b. For a real, causal sequence x(n) for which $X_R(e^{jw}) = \frac{5}{4} \cos \omega$. Obtain
 - (i) The original sequence x(n) and
 - (ii) Imaginary part of the Fourier transform X_I (e^{jw}). (8)