ROLL NO.

Code: AE74

Subject: VLSI DESIGN

AMIETE – ET

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

 (2×10)

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

a. The threshold voltage of n-MOS depletion mode transistor when $V_{SB} = 0$ is

(A) $V_{td} = +0.2 V_{DD}$	$(\mathbf{B}) V_{td} = -0.7 V_{DD}$
(C) $V_{td} = -0.2 V_{DD}$	(D) $V_{td} = +0.7 V_{DD}$

b. The total number of transistors required to realize 3-input n-MOS NAND gate is

(A) 2	(B) 3
(C) 4	(D) 6

c. If $V_{tn} = +0.55V$ and $V_{in} = 2.9$ V, then the output voltage (V_{out}) of the two n-FET chain shown in **Fig.1** is

(A) 2.75V	(B) 2.9V
(C) 3.3V	(D) 0V

d. In n-MOS design rules the minimum separation between diffusion to diffusion is

(A) 1λ	(B) 2λ
(C) 3λ	(D) 4λ

ROLL N	NO.
--------	-----

Code: AE74	Subject: VLSI DESIGN
a In 5 up tachnology the value of	standard unit of conspitance is

e. In 5 μ m technology, the value of standard unit of capacitance is

(A) 0.1 PF	(B) 0.0023 PF
(C) 0.0032 PF	(D) 0.01 PF

f. The condition to work n-MOS transistor in saturation region

(A) $V_{gs} > V_t \& V_{ds} < V_{gs} - V_t$	(B) $V_{gs} < V_t \& V_{ds} > V_{gs} - V_t$
(C) $V_{gs} > V_t \& V_{ds} > V_{gs} - V_t$	(D) $V_{gs} > V_t \& V_{ds} = 0$

g. The $Z_{\text{pu}}/Z_{\text{pd}}\,$ ratio of Pseudo n-MOS inverter driven through similar inverter is

(A) 3/1	(B) 1/3
(C) 4/1	(D) 1/4

h. The dynamic power consumption (P_d) of a CMOS is given by

(A) $m(C_L V_{DD}^2 f)$	(B) $V^2_{DD}f$
(C) $V^2_{DD}T$	(D) $V_{DD}f$

i. The High level noise margin $(NM_{\rm H})$ of inverter is given by

(A) $V_{IH} - V_{IL}$	(B) $V_{OH min} - V_{IL min}$
(C) $V_{OH max} - V_{OL max}$	(D) $V_{IH max} - V_{IL max}$

j. The objective of Built in Self Test (BIST) is to

(A) Reduce test pattern generation cost(B) Reduce the value of test data(C) Reduce test time(D) All of these

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2	a.	Explain with sketches P-well process of CMOS fabrication.	(8)
	b.	What is the importance of Twin-Tub process? Sketch cross-sectional view Twin-Tub Inverter.	v of (5)
	c.	Mention the advantages of CMOS over Bipolar technology.	(3)
Q.3	a.	Starting from the fundamentals derive an expression for I_{ds} of n-MOS investigation region and linear region.	erter in (7)
	b.	What is Latch-up in CMOS? Sketch latch-up circuit for CMOS n-well pro	
	c.	(5) E. For n-MOS enhancement transistor, $\mu_n = 215 \text{ cm}^2/\text{Vsec}$, Oxide capacitance (Cox) = 2.3 fF/ μ m ² , drain current (I _d) = 100 μ A and W/L = 10. Calculate Transconductance (g _m). (4)	

				ROLL NO		
	С	ode: AE74 S	ubject: V	VLSI DESIGN)	
Q.4	a.	Discuss λ -based design rules for wires and	l contacts.		(8)	
	b.	Draw stick-diagrams for n-MOS inverter, F (i) 3-input n-MOS NOR gate (ii) 2-input CMOS (P-well) NOR gate	P-well CM	OS inverter	(8)	
Q.5	a.	Show that the total delay of cascaded N nur	the total delay of cascaded N number of CMOS inverters is $3.5 \text{ eN}\tau$. (7)			
	b.	Explain how Super buffers can be used to a inverters are used to drive more capacitive	ers can be used to achieve symmetrical transitions re more capacitive loads.			
	c.	Find the time constant (τ_p) of p-FET for the	ant (τ_p) of p-FET for the following parameters:			
		$(W/L)_p = 8$, $K_p = 62 \mu A/V^2$, $V_{tp} = -0.85 V$, V 150 fF.	V, the total capacitanc	ce is (4)		
Q.6	a.	Write the scaling factors for the following of	levice para	ameters.	(8)	
		 (i) Gate capacitance (ii) Saturation current I_{dss} (iii) Power speed product (P_T) 				
	b.	b. With truth table and stick diagram explain Bus arbitration logi		ation logic for n-line b	us. (8)	
Q.7	a.	Explain the operation of 4x4 barrel shifter v limitation of 4x4 crossbar switch?	er with schematic. What is the		(8)	
	b.	Design a single bit adder and implement 4- elements.	bit ALU fi	unctions using adder	(8)	
Q.8	a.	Explain with circuit diagram n-MOS and C	MOS Pseu	udo-static memory cel	ls. (8)	
	b.	Discuss briefly the ground rules for success	ful design		(8)	
Q.9		Write short notes on :		(4×4=	16)	
		 (i) Design style and philosophy (ii) System partitioning (iii) Boundary Scan Test (BST) (iv) Built-In-Self-Test (BIST) 				