ROLL NO. _

Code: AE59

Subject: CIRCUIT THEORY & DESIGN

AMIETE – ET

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
- **Q.1** Choose the correct or the best alternative in the following: (2×10)
 - a. Ideal voltage source should have

(A) Zero internal resistance	(B) Infinite internal resistance
(C) Large value of EMF	(D) Low value of current

b. One of the following laws of electrical network is used in the node voltage analysis of networks

(A) KVL	(B) KCL
(C) Ohms Laws	(D) Faraday laws

c. In nodal analysis, if there are N nodes in the circuit, then how many equations will be written to solve the network?

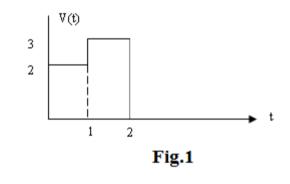
(A) N	(B) N-1
(C) N+1	(D) N-2

d. The Laplace transform of $e^{-at} \cos \omega t$ is

(A) $\frac{s+a}{(s-a)^2+\omega^2}$	$(\mathbf{B}) \ \frac{\mathbf{s} + \mathbf{a}}{(\mathbf{s} + \mathbf{a})^2 + \omega^2}$
(C) $\frac{s}{(s+a)^2+\omega^2}$	$(\mathbf{D}) \ \frac{a}{\left(s-a\right)^2 + \omega^2}$

e. Superposition theorem is not applicable for

(A) Voltage calculation	(B) Bilateral elements
(C) Power calculation	(D) Passive elements


Code: AE59

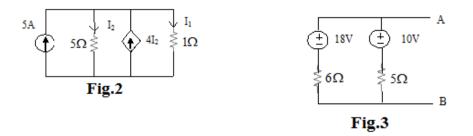
ROLL NO.

f. In a two port network , the condition for reciprocity in terms of 'h' parameters is

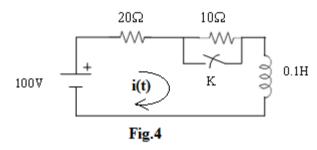
(A) $h_{12} = h_{21}$	(B) $h_{11} = h_{12}$
(C) $h_{11} = -h_{22}$	(D) $h_{12} = -h_{21}$

- g. A pole of driving point admittance function implies.
 - (A) Zero current for a finite value of driving voltage
 - (B) Zero voltage for a finite value of driving current
 - (C) An open circuit condition
 - (D) None of these
- h. A Hurwitz's polynomial has
 - (A) Only zeros in the left-half of s-plane
 - (B) Poles on 'jω' axis
 - (C) Only poles in the left-half of s-plane
 - (D) None of these
- i. The Laplace transform of V(t) shown in Fig.1 is
 - (A) $\frac{1}{s}e^{-s} \frac{3}{s}e^{-2s}$ (B) $\frac{2}{s} - \frac{3}{s}e^{-2s}$ (C) $\frac{2}{s} + \frac{1}{s}e^{-s}$ (D) $\frac{2}{s} + \frac{1}{s}e^{-s} - \frac{3}{s}e^{-2s}$

j. Poles and zeros of a driving point function of a network are simple and interlace on the ' $j\omega$ ' axis. The network consists of elements


(A) R and C	(B) L and C
(C) R and L	(D) R, L and C

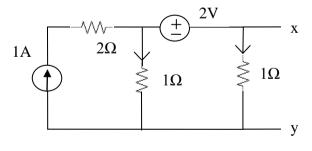
Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.


Q.2 a. Explain dependent and independent, voltage and current source with an example. (8)
b. Find I₁ and I₂ in Fig.2. (4)
c. Obtain a single current source for the network shown in Fig.3. (4)

AMIETE - ET

Subject: CIRCUIT THEORY & DESIGN

Q.3 a. A D.C voltage of 100V is applied in the circuit as shown in Fig.4 with the switch K as open. Find the complete expression for the current i(t) after the switch k is closed at t = 0. (8)

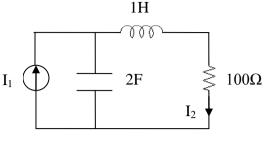

b. Explain the single tuned circuits and double tuned circuits. (8)

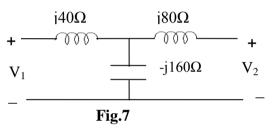
Q.4 a. Find the inverse Laplace transform of
$$I(s) = \frac{s+1}{s(s^2+4s+4)}$$
 (8)

b. A series RL circuit is energized by D.C voltage of 1.0V by switching it at t=0. If R=1 Ω and L=1H. Find the expression for the current in the circuit. (8)

Q.5 a. Explain the superposition theorem with the help of a suitable example. (8)

b. Find the Thevenin's equivalent to the left of terminals x-y in the network of Fig.5. (8)




(8)

b. Find the pole zero locations of the current transfer ratio I_2/I_1 in S- domain

for circuit shown in Fig.6.

- Fig.6
- Q.7 a. Draw the parallel connection of a two port network and find the y- parameters of parallel connection of a two port network. (8)
 - b. Find the open circuit parameters of the two port network shown in Fig.7. (8)

Q.8 a. Write the properties of RL impedances. (6) b. The driving point impedance of a one port LC network is given by $Z(s) = \frac{8(s^2 + 4)(s^2 + 25)}{s(s^2 + 16)}$ Obtain the foster form of equivalent network (10)

- Q.9 a. Define the Transfer Function and write the properties of the Transfer Function. (8)
 - (i) Magnitude and frequency normalization
 - (ii) The approximation problem in network theory (8)

b. Explain the following: