ROLL NO. __

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. The function $\sin(\pi u)/(\pi u)$ is denoted by

(A) sinc (πu)	(B) sinc (u)
(C) signum	(D) none of these

b. A periodic signal x(n) of period N_1 is added to another periodic signal of period N_2 . The period of the resulting signal is always

(A) $N_1 + N_2$	(B) $N_1 N_2$
(C) LCM of N_1 and N_2	(D) GCD of N_1 and N_2

c. The unit step response of an LTI system with impulse response $h(n) = \delta(n) - \delta(n-1)$ is

(A) $\delta(n-1)$	(B) δ(n)
(C) $u(n-1)$	(D) u(n)

d. If the fourier series coefficients of a signal are periodic, then the signal must be

(A) continuous-time, periodic	(B) discrete-time, periodic
(C) continuous-time, nonperiodic	(D) discrete-time, nonperiodic

e. The Fourier series representations are based on using

(A) constant coefficients	(B) only cosine functions
(C) only sine functions	(D) orthogonal functions

f. Let X[k] represents the Discrete-time Fourier series (DTFS) coefficients of the periodic sequence x(n) with period N. The DTFS coefficients of the signal $(-1)^n x(n)$ in terms of X[k] are

1

(A)
$$X[k]$$

(B) $X[-k]$
(C) $X\left[k+\frac{N}{2}\right]$
(D) $X\left[k-\frac{N}{2}\right]$

ROLL NO.

			(ROLL NO	
	Co	de: AE57/AC57/AT57 S	ubject: SIGNALS AND SYSTI	EMS
	g.	The property of Fourier transform the domain is equivalent to expansion in	hat states that the compression in time in the frequency domain is	
		(A) duality(C) time scaling	(B) time shifting(D) frequency shifting	
	h.	Two signals $x_1(n)$ and $x_2(n)$ are domain, their ROCs are	related by $x_2(n) = x_1(-n)$. In the	e z -
		(A) the same(C) negative of each other	(B) reciprocal of each other(D) complement of each other	
	i. For distortionless transmission through an LTI system of frequency response $H(\omega)$, the phase of $H(\omega)$ is			nse
		(A) constant(C) independent of ω	(B) zero(D) linearly dependent on ω	
	j.	A system characterized by the system	n function $H(z) = \frac{1}{2}(1 + z^{-1})$ is a	
		(A) lowpass filter(C) bandpass filter	(B) highpass filter(D) bandreject filter	
		Answer any FIVE Questions Each question car	-	
Q.2	a.	For an energy signal $x(t)$ with energy following signals: (i) $x(t-T)$	rgy E_x , determine the energy of the (ii) x(at)	
		(i) $x(t-1)$ (iii) $x(at-b)$	(iv) ax(t)	(8)
	b.	If $x(t) * h(t) = y(t)$, then show that	$\mathbf{x}(\mathbf{at}) * \mathbf{h}(\mathbf{at}) = \frac{1}{ \mathbf{a} } \mathbf{y}(\mathbf{at})$	(8)
Q.3	a.	Let $X[k]$ represent the DTFS coefficient period N. Find the DTFS coefficient	Ficients of the periodic sequence $x(n)$ nts of $(-1)^n x(n)$	with (6)
	b.	Suppose we are given the following with period $N = 8$ and Fourier serie	g information about a periodic signal x s coefficients $X[k]$:	c(n)
			(ii) $x(2n+1) = (-1)^n$	(10)
Q.4	a.	Given that $x(t)$ has the Fourier tran of the signal listed below in terms of	sform $X(\omega)$, express the Fourier transform $X(\omega)$.	forms
		(i) $x_1(t) = x(1-t) + x(-1-t)$	(ii) $x_2(t) = x(3t-6)$	(8)
	b.	Find the Fourier transform $G(\omega)$ of	the signal $g(t) = \frac{1}{\pi t}$	(8)
Q.5	a.	Given that $x(n)$ has the Fourier trans		
		transforms of the following signals $(2 + 1)^2$		
		(i) $x_1(n) = (n-1)^2 x(n)$	(11) $x_2(n) = e^{\int u^{n/2} x(n+2)}$	(8)

Code: AE57/AC57/AT57

Subject: SIGNALS AND SYSTEMS

b. Let the sequence x(n) be a real sequence and let $X(e^{j\omega}) = DTFT[x(n)]$ (i) Prove that the magnitude spectrum is an even function, that is, $|X(e^{j\omega})| = |X(e^{-j\omega})|$

(ii) Prove that the phase spectrum is an odd function, that is, $\angle X(e^{j\omega}) = -\angle X(e^{-j\omega})$ (8)

Q.6 a. A waveform $x(t) = 10 + 10\sin(500t)$ is to be sampled periodically and reproduced from these samples. Find the maximum allowable time interval between sample values. How many sample values are required to be stored in order to produce 2 seconds of this waveform? (6)

b. A signal $x(t) = \sin(\pi t)/(\pi t)$ is sampled by $s(t) = \sum_{n=-\infty}^{\infty} \delta(t - n/2)$. Determine and sketch the sampled signal and its Fourier transform. (10)

- Q.7 a. Show that for an LTI system, when the input is $x(t) = e^{s_0 t}u(t)$, the output is of the form $y(t) = H(s_0)e^{s_0 t}u(t)$. How is $H(s_0)$ related to the impulse response of the system? (6)
 - b. Determine the impulse response h(t) of a system having a double-order pole at s = -a and a zero at s = -b, where a, b > 0 and b - a = B. It is also given that h(0) = 2 (10)
 - **Q.8** a. Apply the final-value theorem of z -transform to determine $x(\infty)$ for the signal $x(n) = \begin{cases} 1, & \text{if } n & \text{is even} \\ 0, & \text{otherwise} \end{cases}$ (7)
 - b. An LTI system is characterized by the system function

$$H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$$

Specify the ROC of H(z) and determine the impulse response h(n) for the following conditions:

(i) The system is causal and unstable

(ii) The system is noncausal and stable

- (iii) The system is anticausal and unstable (9)
- Q.9 a. Define the terms mean, variance, co-variance and correlation coefficient as applied to random variable X with pdf $f_X(x)$. (8)
 - b. Find the power spectral density for the random process $X(t) = 4\cos(5\pi t)$ and also compute the power in the random process. (8)

3