ROLL NO.

Code: AE56/AC56/AT56

Subject: ENGINEERING MATHEMATICS - II

AMIETE – ET/CS/IT

Time: 3 Hours

DECEMBER 2013

Max. Marks: 100

PLEASE WRITE YOUR ROLL NO. AT THE SPACE PROVIDED ON EACH PAGE IMMEDIATELY AFTER RECEIVING THE QUESTION PAPER.

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. If f(z) = u(x, y) + iv(x, y) is analytic, then its derivative f'(z) is equal to
 - (A) $\frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}$ (B) $\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial y}$ (C) $\frac{\partial u}{\partial x} + i \frac{\partial u}{\partial y}$ (D) None of these
- b. The value of the integral $\int_{C} \frac{2z+1}{z^2+z} dz$, where C is $|z| = \frac{1}{2}$, is

(A)
$$\pi i$$
 (B)
(C) $4\pi i$ (D)

c. A unit tangent vector to the curve $x = t^2 + 2$, y = 4t - 5, $z = 2t^2 - 6t$, at the point t = 2, is

2πi

0

- (A) $\frac{6i+3j+4k}{\sqrt{61}}$ (B) $\frac{6i+3j-4k}{\sqrt{61}}$ (C) 2i+2j+k (D) $\frac{2i+2j+k}{3}$
- d. The value of the line integral $\int_{C} \left[(5xy 6x^2) dx + (2y 4x) dy \right]$ along the curve

 $y = x^{3}$ from the point (1,1) to (2, 8) is

Code: AE56/AC56/AT56

Subject: ENGINEERING MATHEMATICS - II

e. The value of $\Delta^3[(1+x)(1+2x)(1+3x)]$, if interval of differencing is 1, is

(A) 36	(B) 24
(C) 18	(D) 6

f. If $y_1 = 1, y_3 = 4, y_4 = 8$, then y_2 is equal to

(A) 2 (B)
$$\frac{5}{3}$$

(C) $\frac{5}{4}$ (D) 3

g. The differential equation of a family of spheres $x^2 + y^2 + (z - c)^2 = R^2$, is

$(\mathbf{A}) \mathbf{x}\mathbf{p} + \mathbf{y}\mathbf{q} = 0$	$(\mathbf{B}) \ \mathbf{x}\mathbf{p} - \mathbf{y}\mathbf{q} = 0$
$(\mathbf{C}) \mathbf{y}\mathbf{p} + \mathbf{x}\mathbf{q} = 0$	$(\mathbf{D}) \ \mathbf{y}\mathbf{p} - \mathbf{x}\mathbf{q} = 0$

h. A party of n persons take their seats at random at a round table. The probability that two specified persons always sit together is

(A) $\frac{2}{n}$	(B) $\frac{2}{n-1}$
(C) $\frac{2}{n-2}$	(D) None of these

i. If the diameter of an electric cable is assumed to a continuous variate with p.d.f. $f(x) = kx(1-x), 0 \le x \le 1$, then K is equal to

(A) 4	(B) 5
(C) 6	(D) 8

j. If a random variable has a Poisson distribution such that 2P(1) = P(2), then the variance is

(A) 1	(B) 2
(C) 3	(D) 4

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied thereof. (8)

Code: AE56/AC56/AT56 Subject: ENGINEERING MATHEMATICS - II

b. Find the bilinear transformation which maps the points i,-i,1 of z-plane into $0,1,\infty$ of w-plane respectively. (8)

Q.3 a. Find Laurent's series expansion of
$$\frac{z^2 - 1}{z^2 + 5z + 6}$$
 about z=0 in the region $2 < |z| < 3$. (8)

b. Use Residue theorem to evaluate
$$\int_{C} \frac{1-2z}{z(z-1)(z-2)} dz, C: |z| = 1.5$$
 (8)

Q.4 a. If
$$u = x^2 + y^2 + z^2$$
 and $V = xI + yJ + zK$, show that $div(uV) = 5u$ (8)

b. Find the angle between the normals to the surface $xy = z^2$ at the points (4, 1, 2) and (3,3,-3). (8)

Q.5 a. Apply Green's theorem to evaluate
$$\int_{C} \left[(3x - 8y^2) dx + (4y - 6xy) dy \right]$$
Where C is the boundary of the region bounded by x=0, y=0, x+y=1 (8)

b. Use Divergence theorem to evaluate $\iint_{S} \left[x^{3} dy dz + x^{2} y dz dx + x^{2} z dx dy \right]$ where

S is the closed surface consisting of the cylinder $x^2 + y^2 = a^2$ and the circular discs z=0 and z=2. (8)

Q.6 a. Use Newton's divided difference formula to evaluate f(8) given that (8)

Х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

b. Find an approximate value of $\log_e 5$ by calculating to four decimal places, by Simpson's $\frac{1}{3}$ rd rule, $\int_0^5 \frac{dx}{4x+5}$

dividing the range into ten equal parts.

(8)

Q.7 a. Apply Charpit's method to solve $(a^2 + b^2)y = bz$. (8)

Code: AE56/AC56/AT56 Subject: ENGINEERING MATHEMATICS - II

b. Use method of separation of variables to solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, given that

$$u(0, y) = 8e^{-3y}$$
. (8)

- **Q.8** a. A committee consists of 9 students two of which are from 1st year, three from 2nd year and four from 3rd year. Three students are to be removed at random. What is the chance that
 - (i) the three students belong to different classes.
 - (ii) two belong to the same class and third to the different class. (8)
 - b. In a certain college, 4% of the boys and 1% of girls are taller than 1.8m. Moreover 60% of the students are girls. If a student is selected at random and is found to be taller than 1.8m, what is the probability that the student is a girl?
 (8)
- **Q.9** a. Fit a Poisson distribution to the set of observations:

х	0	1	2	3	4
f	122	60	15	2	1

b. Assuming that the diameters of 1000 brass plugs taken consecutively from a machine, form a normal distribution with mean 0.7515 cm and standard deviation 0.0020 cm, how many of the plugs are likely to be rejected if the approved diameter is 0.752 ± 0.004 cm? (Given: if z is the normal variable, then area under normal curve for $0 \le z \le 1.75$ is 0.4599 and for $0 \le z \le 2.25$ is 0.4878.) (8)

(8)